01.1 - Graduação (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/2

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Método de Runge-Kutta de 4ª ordem para a equação de Schrödinger estacionária com energia zero
    (2021-12-23) Montenegro, João Gabriel Soares; Bastos, Cristiano Costa; http://lattes.cnpq.br/6385190604693576; http://lattes.cnpq.br/3917123866868446
    A equação de Schrödinger vem sendo resolvida numericamente por diversos métodos de Runge-Kutta. O estudo desta equação considerando a energia do sistema sendo nula, entre diversas outras aplicações, permite a análise do estado limite de ligação de uma partícula em um dado sistema quântico. Assim, no presente trabalho resolvemos a equação em seu modo zero, considerando uma abordagem extrínseca do confinamento em uma região unidimensional, utilizando o método de Runge-Kutta de 4ª ordem mais utilizado para resoluções de EDOs. Inicialmente, obtivemos numericamente as funções de onda para uma partícula confinada em uma reta e em circunferências de diferentes raios, por serem curvas com parametrizações por comprimento de arco conhecidas. Em seguida estudamos curvas a partir de suas curvaturas, o que permitiu o estudo do confinamento em espirais de Arquimedes e em espirais logarítmicas. Por fim, estudamos o confinamento em curvas hipotéticas que ainda não possuem parametrizações definidas. Os resultados obtidos possibilitaram a análise das regiões nas curvas com maiores tendências de sofrerem ionização, podendo ser possivelmente utilizados como modelos para a ionização de moléculas e nanoestruturas com geometrias semelhantes às estudadas.
  • Imagem de Miniatura
    Item
    Técnicas de Modelagem Matemática e os Métodos de Runge-Kutta
    (2021-07-23) Silva, Angelo Antunes da Rocha; Didier, Maria Ângela Caldas; Gondim, João Antônio Miranda; http://lattes.cnpq.br/2674397127545655; http://lattes.cnpq.br/9721552594807972; http://lattes.cnpq.br/9069459979748516
    Este trabalho consiste no estudo da Modelagem Matemática com análise numérica dos modelos. Apresentamos as etapas de um processo de modelagem, definimos e classificamos um modelo matemático e discutimos as técnicas de modelagem por ajuste de curvas usando o Método dos Mínimos Quadrados e por equações diferenciais onde abordamos alguns modelos, dentre eles, os que descrevem uma dinâmica de crescimento populacional e os modelos epidemiológicos. Também, apresentamos os métodos de Série de Taylor e os métodos de Runge-Kutta para a construção de soluções numéricas de um problema de valor inicial. Como contribuição principal, simulamos as soluções analíticas e numéricas para quatro problemas de valor inicial e analisamos os erros das soluções numéricas para responder questões referentes a fórmula geral do método de Runge-Kutta de ordem 2. Calculamos dois tipos de erros: o Erro de Fórmula e o erro em um intervalo. Para o cálculo do erro em um intervalo, utilizamos a norma L2 e uma fórmula fechada de Newton-Cotes. A proposta aqui é fornecer um material sobre Modelagem Matemática que possa ser utilizado tanto por um estudante de Graduação em Matemática, como de outra área de conhecimento que desfrute do Cálculo Diferencial como ferramenta. Observamos que as simulações dos modelos foram realizadas na linguagem de programação Python e os códigos poderão ser acessados através do link disponibilizado na introdução desta dissertação.