01.1 - Graduação (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/2

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 10
  • Imagem de Miniatura
    Item
    Aprendizagem de máquina para classificação de tipos textuais: estudo de caso em textos escritos em português brasileiro
    (2025-07-30) Barbosa, Gabriel Augusto; Miranda, Péricles Barbosa Cunha de; http://lattes.cnpq.br/8649204954287770; http://lattes.cnpq.br/7161363389816372
    A classificação de textos considerando tipos textuais é de suma importância para algumas aplicações de Processamento de Linguagem Natural (PLN). Nos últimos anos, algoritmos de aprendizado de máquina têm obtido bons resultados nesta tarefa considerando textos em inglês. No entanto, pesquisas voltadas para a detecção de tipos textuais escritos em português ainda são escassas, e ainda há muito a ser estudado e descoberto nesse contexto. Assim, este artigo propõe um estudo experimental que investiga o uso de algoritmos de aprendizado de máquina para classificar textos em português considerando tipos textuais. Para isso, propomos um novo corpus composto por textos em português de dois tipos textuais: narrativo e dissertativo. Três algoritmos de aprendizado de máquina tiveram seu desempenho avaliado no corpus criado em termos de precisão, revocação e pontuação F1. Além disso, também foi realizada uma análise dos atributos envolvidos no processo para identificar quais características textuais são mais importantes na tarefa atual. Os resultados mostraram que é possível alcançar altos níveis de precisão e rememoração na classificação de textos narrativos e dissertativos. Os algoritmos obtiveram níveis de métricas semelhantes, demonstrando a qualidade das características extraídas.
  • Imagem de Miniatura
    Item
    Detecção de fake news: uma abordagem baseada em Large Language Models e Prompt Engineering
    (2025-03-20) Fonseca, Pablo Weslley Silva da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/6258598537884813
    Este trabalho aborda o uso de Large Language Models (LLMs) para a detecção de fake news ou notícias falsas no idioma inglês e português. As notícias falsas têm gerado impactos negativos, como desinformação e conflitos sociais, sendo amplamente disseminadas pelas redes sociais. Embora métodos tradicionais de verificação sejam eficazes, como checagem manual e agências de verificação de fatos, a aplicação de algoritmos de machine learning e deep learning trouxe avanços importantes. No entanto, esses modelos apresentam limitações, como perda de contexto semântico e custos de treinamento. A introdução da arquitetura Transformers possibilitou avanços significativos com LLMs, como BERT, GPT e T5, devido à sua capacidade de compreender padrões linguísticos complexos. Este trabalho propõe uma abordagem de detecção de notícias falsas a partir recuperações de informações pela Web e o modelo Qwen2.5-7B-Instruct, comparando o desempenho com propostas que combina recuperação de informações com modelos tradicionais e LLMs. Os resultados destacam vantagens e desvantagens, contribuindo para futuras melhorias em sistemas automatizados de detecção de notícias falsas.
  • Imagem de Miniatura
    Item
    Geração aumentada para recuperação de dados urbanos integrados: consolidando dados do IBGE, Censo, CNEFE e OSM para a otimização do planejamento urbano
    (2025-03-21) Conceição, Keyson Raphael Acioli da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/3198610477751043
    Nos últimos anos, os campos da Inteligência Artificial (IA) e do aprendizado de máquina (AM) revolucionaram o domínio do planejamento urbano, pois permitem que volumes substanciais de dados sejam analisados de forma eficaz, incentivando melhor alocação de recursos e entregas de serviços públicos. Para atingir este objetivo, o agente inteligente proposto neste trabalho reúne dados de várias fontes, incluindo Censo Demográfico, Cadastro Nacional de Endereços para Fins Estatísticos - CNEFE, e OpenStreetMap (OSM) para oferecer respostas baseadas em contexto relacionadas à distribuição da população e acesso a diferentes serviços urbanos. A abordagem proposta inclui um pipeline de processamento que implementa normalização, indexação vetorial das informações e representação semântica para tornar as consultas mais eficazes. Para avaliar o sistema proposto, foi conduzido um experimento com especialistas em planejamento urbano e analisamos a relevância, clareza e utilidade das respostas geradas pelo sistema. Tais resultados mostram que o agente é capaz de detectar áreas com pouca cobertura de serviços necessários, indicando uma alocação adequada. No entanto, outros desafios, tais como a necessidade de melhor clarificação das respostas e ampliação da cobertura espacial, foram reconhecidos como oportunidades para trabalho futuro.
  • Imagem de Miniatura
    Item
    Implementação de um agente inteligente para atendimento automatizado de dúvidas acadêmicas na UFRPE
    (2025-03-31) Silva, Evelyn Mylena Bezerra e; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584; http://lattes.cnpq.br/5200293461568988
    Este trabalho teve como objetivo principal desenvolver e validar um agente inteligente baseado em técnicas de Processamento de Linguagem Natural (PLN) e Recuperação de Informação, voltado ao suporte acadêmico no curso de Bacharelado em Sistemas de Informação (BSI) da Universidade Federal Rural de Pernambuco (UFRPE). O sistema foi projetado para oferecer respostas rápidas, relevantes e contextualizadas a perguntas frequentes relacionadas à vida acadêmica dos estudantes, como carga horária, disciplinas, matrículas e procedimentos administrativos. A implementação envolveu a coleta e estruturação de documentos institucionais, a construção de um modelo vetorial para recuperação semântica de respostas e a integração com um módulo de memória conversacional. Para a validação, as respostas do agente inteligente foram comparadas com um FAQ do curso de BSI, utilizando como métrica a similaridade do cosseno, aplicada ao conteúdo semântico das respostas. Os resultados indicaram uma média de similaridade de aproximadamente 0,6396, com mediana de 0,6548 e baixa dispersão. A maioria das respostas apresentou alto ou médio grau de alinhamento semântico com o conteúdo oficial, sendo classificadas como semanticamente adequadas. Casos de baixa similaridade representaram uma minoria e estiveram, em geral, relacionados a perguntas de cunho prático-operacional não abordadas na base de dados do sistema. Em contrapartida, observou-se que, em alguns contextos, o agente inteligente forneceu respostas mais completas e fundamentadas do que aquelas presentes no próprio FAQ. Conclui-se que o sistema desenvolvido apresenta desempenho satisfatório e demonstra potencial para expansão como ferramenta institucional de apoio ao estudante, promovendo maior autonomia, agilidade e acessibilidade no acesso a informação acadêmica.
  • Imagem de Miniatura
    Item
    A comprehensive software aging analysis in LLMs-based systems
    (2025) Santos, César Henrique Araújo dos; Andrade, Ermeson Carneiro de; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/9618931332191622
    Large language models (LLMs) are increasingly popular in academia and industry due to their wide applicability across various domains. With their rising use in daily tasks, ensuring their reliability is crucial for both specific tasks and broader societal impact. Failures in LLMs can lead to serious consequences such as interruptions in services, disruptions in workflow, and delays in task completion. Despite significant efforts to understand LLMs from different perspectives, there has been a lack of focus on their continuous execution over long periods to identify signs of software aging. In this study, we experimentally investigate software aging in LLM-based systems using Pythia, OPT, and GPT Neo as the LLM models. Through statistical analysis of measurement data, we identify suspicious trends of software aging associated with memory usage under various workloads. These trends are further confirmed by the Mann-Kendall test. Additionally, our process analysis reveals potential suspicious processes that may contribute to memory degradation.
  • Imagem de Miniatura
    Item
    Utilização de processamento de linguagem natural para identificação do domínio da escrita formal em redações da língua portuguesa
    (2020-12-07) Araujo, Viviane Barbosa de; Mello, Rafael Ferreira Leite de; http://lattes.cnpq.br/6190254569597745; http://lattes.cnpq.br/5293423783550464
    No Brasil, o principal meio de ingressar em uma universidade pública ou privada é através do Exame Nacional do Ensino Médio, o ENEM. Esse exame exige que o candidato possua a habilidade de redigir um bom texto dissertativo-argumentativo de acordo com a norma formal da língua portuguesa, podendo ser eliminado do exame caso não cumpra esse requisito. Com o objetivo de ajudar o candidato a identificar os seus erros e ajudar no processo de escrita de uma boa redação, este artigo propõe a implementação de uma ferramenta capaz de identificar os erros ortográficos e gramaticais de um texto utilizando técnicas de Processamento de Linguagem Natural (PLN). A análise das ferramentas mostrou que os resultados obtidos pela pesquisa são promissores, principalmente em relação à identificação de erros gramaticais.
  • Imagem de Miniatura
    Item
    Evaluation of dimensionality reduction and truncation techniques forword embeddings
    (2021-03-03) Aoun, Paulo Henrique Calado; Nascimento, André Câmara Alves do; Silva, Adenilton José da; http://lattes.cnpq.br/0314035098884256; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/1048218441267310
    O uso de word embeddings está se tornando muito comum em diversas tarefas de processamento de linguagem natural. Na maioria das vezes, eles exigem recursos computacionais que não podem ser encontrados na maior parte dos dispositivos móveis atuais. Neste trabalho, avaliamos uma combinação de estratégias de truncagem numérica e redução de dimensionalidade para obter representações vetoriais menores sem perdas substanciais no desempenho.
  • Imagem de Miniatura
    Item
    Coh-Metrix PT-BR: uma API web de análise textual para à educação
    (2021-03-02) Salhab, Raissa Camelo; Mello, Rafael Ferreira Leite de; http://lattes.cnpq.br/6190254569597745; http://lattes.cnpq.br/6761163457130594
    O CohMetrix é um sistema computacional que provê diferentes medidas de análise textual incluindo legibilidade, coerência e coesão textual. Essas medidas permitem uma análise mais profunda de diferentes tipos de textos educacionais como redações, respostas de perguntas abertas e mensagens em fóruns educacionais. Este artigo apresenta o protótipo, site e API, com a adaptação das medidas do CohMetrix para a língua portuguesa do Brasil.
  • Imagem de Miniatura
    Item
    Inferência automática de nível de dificuldade de receitas culinárias usando técnicas de processamento de linguagem natural
    (2020-12-21) Britto, Larissa Feliciana da Silva; Pacífico, Luciano Demétrio Santos; Ludermir, Teresa Bernarda; http://lattes.cnpq.br/6321179168854922; http://lattes.cnpq.br/9521600706234665; http://lattes.cnpq.br/5058497100007411
    Neste trabalho, será proposta uma ferramenta de inferência do nível de dificuldade de receitas culinárias. A inferência será feita através da classificação textual dos modos de preparo das receita. A ferramenta será parte fundamental no desenvolvimento de um sistema de recomendação de receitas culinárias sensível ao contexto baseado em conteúdo. Serão adotados alguns dos principais classificadores da literatura de Classificação de Texto, além de diferentes métodos de extração de características. Uma avaliação experimental é executada, no intuito de selecionar as melhores abordagens para compor o sistema.
  • Imagem de Miniatura
    Item
    Predição de popularidade de podcasts através de características textuais
    (2019) Santana Júnior, Bernardo de Moraes; Cabral, Giordano Ribeiro Eulalio; http://lattes.cnpq.br/6045470959652684; http://lattes.cnpq.br/9948081717430490
    Com o tremendo crescimento dos Podcast se profissionalização de seus criadores,ao ponto de redes de notícias chamarem esse momento como ”era de ouro”para os Podcasts, novas ferramentas surgiram para auxiliar esses produtores na construção emanutenção de seus canais. Nesse contexto encontrar características nos episódios produzidos que proporcionem um alcance maior ao público alvo é de grande valor tantopara os criadores quanto para os ouvintes, permitindo que canais permaneçam ativospor mais tempo e ofereçam uma melhor qualidade de conteúdo.Assim, este trabalho propõe um estudo de análise de popularidade dosPodcastsna-cionais, utilizando uma ferramenta de análise da audiência dos Podcasts em um dos agregadores de canais e episódios mais utilizados do mundo, oiTunes. Através de ferramentas deWeb Scraping para a coleta das informações disponíveis e necessárias,de ferramentas para transcrições dos áudios dos episódios para a obtenção do que foidito e o calculo de métricas para medir precisão do modelo gerado, assim fazer uma análise de quais informações são relevantes para a predição de popularidade de um canal.Resultados obtidos foram favoráveis na correlação entre as categorias analisadas de forma individual e texto dos episódios nelas contidos, enquanto em uma análise em que categorias não são descriminadas há uma baixa relação entre texto e popularidade, demonstrando que a categoria de determinado canal tem um papel importante na análise de sua popularidade.