TCC - Bacharelado em Ciência da Computação (Sede)

URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/415

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 7 de 7
  • Imagem de Miniatura
    Item
    Comparison of recommendation algorithms for user groups: a food-based case study
    (2023-04-24) Vasconcelos, Caio Giovanni Pereira; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/4775036700843482
    There is a rise in the development of platforms that work with the distribution of buying and selling food, and with the increase in food options and the number of users, such platforms use recommendation systems to facilitate the user’s choice. These recommendations are usually based on information that the algorithm obtains previously. And increasingly, these recommendations need to be right in specific contexts. This article proposes to compare, through common metrics in the literature, the use of two recommendation algorithms in a context of user groups to make a joint recommendation. One of the algorithms uses a database of groups in neural network training, and the other algorithm uses databases of auxiliary domains with different contexts to perform the prediction. The results indicate that it is possible to perform the prediction for groups of users even if a database with scarce data is used. The article is a theoretical basis to show the efficiency of recommending it to groups in the food domain, and can be incorporated and added to existing platforms.
  • Imagem de Miniatura
    Item
    Análise de um sistema de recomendação de restaurantes sensível ao contexto sobre o grau de satisfação dos usuários
    (2023-09-01) Melo Filho, Carlos Olimpio Rodrigues de; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/6986499479035317
    Aplicações populares de sistemas de recomendação podem ser encontradas em diversas áreas. No ramo de alimentação, plataformas como o TripAdvisor se destacam por sugerir recomendações de restaurantes especializadas baseadas em vários tipos de informações relevantes como avaliações de outros usuários para o cardápio, ambiente e recomendações de restaurantes mais próximos são algumas das especialidades dessas plataformas. Com a possibilidade de utilização de novos dados sensíveis ao contexto do usuário, este trabalho tem como principal objetivo avaliar o uso do motivo de ida ao restaurante para reorganizar a recomendação final de restaurantes através de uma pós-filtragem baseada em contexto. Para concretizar o objetivo foi desenvolvida uma aplicação móvel, o SR Recife Restaurants, onde para avaliar o grau de satisfação de usuários reais em relação aos restaurantes recomendados, uma abordagem de avaliação online, utilizando questionários, foi utilizada. Ao realizar o experimento com 15 usuários foi possível notar um aumento de 26,67% no grau de satisfação das top-5 primeiras recomendações ao utilizar o tipo de ida ao restaurante como dado de contexto para a fase de pós-filtragem.
  • Imagem de Miniatura
    Item
    Inferência automática de nível de dificuldade de receitas culinárias usando técnicas de processamento de linguagem natural
    (2020-12-21) Britto, Larissa Feliciana da Silva; Pacífico, Luciano Demétrio Santos; Ludermir, Teresa Bernarda; http://lattes.cnpq.br/6321179168854922; http://lattes.cnpq.br/9521600706234665; http://lattes.cnpq.br/5058497100007411
    Neste trabalho, será proposta uma ferramenta de inferência do nível de dificuldade de receitas culinárias. A inferência será feita através da classificação textual dos modos de preparo das receita. A ferramenta será parte fundamental no desenvolvimento de um sistema de recomendação de receitas culinárias sensível ao contexto baseado em conteúdo. Serão adotados alguns dos principais classificadores da literatura de Classificação de Texto, além de diferentes métodos de extração de características. Uma avaliação experimental é executada, no intuito de selecionar as melhores abordagens para compor o sistema.
  • Imagem de Miniatura
    Item
    Recomendação e geração de receitas baseada na substituição de ingredientes
    (2020-12-21) Oliveira, Emília Galdino de; Pacífico, Luciano Demétrio Santos; Ludermir, Teresa Bernarda; http://lattes.cnpq.br/6321179168854922; http://lattes.cnpq.br/9521600706234665; http://lattes.cnpq.br/6278486720525640
    Atualmente, mesmo com o aumento no número de páginas web e sistemas de compartilhamento de receitas, usuários podem ter dificuldade na busca por pratos específicos através da enorme quantidade de dados contidos nesses repositórios. Encontrar receitas que se adequem a um conjunto de ingredintes em mãos, contemplando as vontades e restrições desses usuários, pode ser uma tarefa demorada ou mesmo impossível. Neste trabalho, um sistema de recomendação e geração de receitas é proposto, baseado na substituição de ingredientes das receitas e em uma abordagem focada nos dados, em uma tentativa de ajudar os usuários a encontrarem receitas que contemplem tanto seus desejos, quanto suas restrições alimentares, evitando desperdícios.
  • Imagem de Miniatura
    Item
    Avaliação entre algoritmos de filtragem colaborativa baseada em vizinhança e transferência de conhecimento para CD-CARS
    (2019) Silva, Guilherme Melo da; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/7122596102314881
    A realização de recomendações em cenários com a falta de preferências expressas por usuários é uma importante limitação para os Sistemas de Recomendação (SR). Devido a este problema pesquisas envolvendo SR de domínio cruzado (SRDC) vêm ganhando relevância, onde a filtragem colaborativa baseada (FC) é uma das técnicas mais exploradas nesta área. O sistema CD-CARS mostra que o uso de informações contextuais, disponíveis nas preferências dos usuários, pode otimizar algoritmos de FC baseada em vizinhança, técnica bastante difundida em FC para multidomínios. Embora apresentem recomendações precisas, alguns algoritmos de FC baseada em vizinhança, como o utilizado no CD-CARS, têm a limitação do uso de multidomínios apenas na ocorrência da sobreposição de usuários entre os domínios, cenário não trivial em bases de dados reais. Este trabalho apresenta uma análise comparativa entre diferentes algoritmos de recomendação envolvendo técnicas de filtragem colaborativa. Os algoritmos NNUserNgbr-transClosuredo CD-CARS (FC baseada em vizinhança) e Tracer(FC baseada em transferências de conhecimento), foram utilizados como base para os algoritmos de recomendação. Nos experimentos, os algoritmos de FC foram integrados às técnicas sensíveis ao contexto, abordadas no CD-CARS: Pré-Filtragem e Pós-Filtragem Contextual, sendo aplicados sobre dois conjuntos dedados, formados por dois domínios auxiliares e um alvo, com e sem sobreposição de usuários entre os domínios. As métricas de desempenho MAE e RMSE foram utilizadas para a avaliação dos algoritmos. Os resultados dos experimentos mostraram que o algoritmo Tracer apresentou melhores resultados, em relação ao algoritmo NNUserNgbr-transClosure, em todos os experimentos envolvendo o cenário sem a sobreposição de usuários, com e sem o uso da Pré-Filtragemou Pós-Filtragem Contextual.
  • Imagem de Miniatura
    Item
    Um estudo comparativo de técnicas para a classificação contextual de companhia para sistemas de recomendação sensíveis a contexto
    (2019-01-22) Silva, Douglas Henrique Santana da; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/6428879549861854
    Atualmente, a grande quantidade de informação tem prejudicado os usuários durante a tomada de decisões. Em face deste problema, sistemas de recomendação tem sido propostos de modo a conferir sugestões que auxiliem aos usuários em face de tal problema. Essas sugestões são ainda mais valiosas quando esses sistemas passam a sugerir itens se baseando também nos contextos ao qual o usuário está inserido. Dentre os esses contextos o de companhia pode ser destacado. Por meio da inferência do contexto de companhia o sistema poderá sugerir diferentes itens caso o usuário esteja acompanhado ou não. Um bom exemplo de sistema que possui tais características é o Sistemas de Recomendação em Domínios Cruzados e Sensíveis a Contexto (CD-CARS). Entretanto, o método de aprendizagem não supervisionada para inferência contextual de companhia no CD-CARS possui limitações. Desta forma, a presente pesquisa analisou e destacou um método de aprendizagem supervisionada que substitui a atual abordagem de classificação contextual de companhia executada no CD-CARS.
  • Imagem de Miniatura
    Item
    Estudo comparativo de técnicas de seleção de contextos em sistemas de recomendação de domínio cruzado sensivéis ao contexto
    (2018) Brito, Victor Sales de; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/0340874538265508
    Existem diversas abordagens para a implementação dos sistemas de recomendação, dentre elas, a abordagem de “sistemas de recomendação de domínio cruzado sensíveis ao contexto” (Cross-Domain Context-Aware Recommender Systems - CD-CARS), empregada neste trabalho, pois possibilita a melhoria na qualidade das recomendações usando vários domínios (ex.: livros, filmes e músicas) e considerando a aplicação de contextos (ex.: estação do ano, tempo, companhia, localização). No entanto, é necessário cautela ao utilizar contextos para realizar sugestões de itens, uma vez que os contextos podem influenciar negativamente o desempenho da recomendação quando considerados “irrelevantes”. Portanto, a seleção de contextosrelevanteséumfatorchaveparaodesenvolvimentodotipodesistemaCD-CARS e, dentro da literatura, constatou-se uma escassez de trabalhos acerca da aplicação de técnicas de seleção em conjuntos de dados com informações contextuais e de domínio cruzado. Dessa forma, este trabalho aplicou as técnicas de seleção Information Gain (IG), Teste qui-quadrado (χ2), Minimum Redundancy Maximum Relevance (MRMR) e Monte Carlo Feature Selection (MCFS),emdozeconjuntosdedadoscomtrêsdiferentesdimensões contextuais (tempo, localização e companhia) e domínios distintos (livros, televisão e músicas). Por fim, a partir dos resultados encontrados, averiguou-se que a técnica MCFS conseguiu classificar a relevância dos contextos de forma mais satisfatória.