Uma breve introdução sobre medida e integração

Imagem de Miniatura

Data

2025-03-19

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

O presente trabalho investiga as relações preliminares da integral de Lebesgue, utilizando a teoria da medida e a σ-álgebra. Inicialmente, introduzimos as definições preliminares de conjuntos e suas operações, além da abordagem sobre classes e famílias de conjuntos, abordamos algumas proposições e definições de semi-aneis e semi-álgebras e sua generalização para contextos enumeráveis, abordamos algumas propriedades e definições de medida como foco de uma definição simplista da integração, além de uma análise das funções mensuráveis que são integráveis à Lebesgue. A seguir, mostramos a existência de sequências de funções simples sn que convergem para uma função f mensurável, permitindo que a integral de Lebesgue seja definida como o limite da integral dessas funções simples. Exploramos as propiedades das integrais para variadas hipóteses, o teorema de convegência monótona e a integral de sn sob a medida de Borel e sua comparação com a integral de Riemann para sn, enuciando que, as funções integraveis via Riemann são integraveis via Lebesgue. Com base nesses resultados, mostramos que a integral de Lebesgue estende a integral de Riemann, garantindo que qualquer função integrável no sentido de Riemann também seja integrável no sentido de Lebesgue. O objetivo deste trabalho é fazer uma breve introdução sobre as integrais de Riemann e Lebesgue, demonstrando que a integral de Lebesgue complementa a de Riemann.

Descrição

Palavras-chave

Teoria das medidas, Integral de Lebesgue, Integral de Riemann, Funções (Matemática)

Referência

SILVA, Natanael Oliveira da. Uma breve introdução sobre medida e integração. 2025. 67 f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Departamento de Matemática, Universidade Federal Rural de Pernambuco, Recife, 2025.

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como openAccess