Bacharelado em Ciência da Computação (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/6


Siglas das Coleções:

APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 9 de 9
  • Imagem de Miniatura
    Item
    Um currículo de aprendizado por reforço para o cenário “Run to Score with Keeper” do Google Research Football Environment
    (2019-12-10) Silva, Jonatan Washington Pereira da; Sampaio, Pablo Azevedo; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/8865836949700771; http://lattes.cnpq.br/6846637095187550
    O aprendizado por reforço é um conjunto de técnicas que permitem a um agente interagir com um determinado ambiente. Os agentes observam o estado do ambiente e executam uma ação, a ação é avaliada por meio de uma recompensa obtida. O agente tem como objetivo maximizar esta recompensa. Diversas questões como: locomoção em três dimensões e jogos eletrônicos foram abordados pelo aprendizado por reforço (KURACH et al., 2019). O treinamento de agentes para um jogo de futebol normalmente possui recompensas esparsas, o que retarda o aprendizado (MATIISEN et al., 2019). Uma técnica que pode contornar este obstaculo é o aprendizado por currículo proposto em (BENGIO et al., 2009). O aprendizado por currículo é uma técnica que aborda sub-tarefas mais simples da tarefa principal e aumenta gradativamente o nível de dificuldade ao longo do tempo. Neste trabalho apresentamos dois currículos, identificados como: 5-15-30-50 e 3-10-20-67, para o cenário Run to Score with Keeper da Football Academy. Mostramos que os currículos, em média, obtiveram melhores resultados se comparados ao treinamento apenas no cenário principal, sem currículo. O currículo 3-10-20-67 obteve um melhor resultado mesmo considerando o desvio padrão.
  • Imagem de Miniatura
    Item
    Graph Embeddings para Node Classification em representação baseada em grafos de frases em linguagem natural
    (2019) Silva, João Marcos Nascimento da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/5276914899067852
    Devido a grande quantidade de pesquisas desenvolvidas na área biomédica e na disponibilidade de enormes bases de dados sobre entidades biomédicas, incluindo proteínas, genes e vírus, vem a necessidade de se poder indexar de forma automática tais bases de conhecimento humano.Tal necessidade tem levado ao desenvolvimento e ferramentas computacionais para auxiliar o pesquisador na recuperação de informações específicas envolvendo certas proteínas e suas relações. Neste contexto, dois dos principais problemas na área biomédica envolvendo técnicas de Mineração de Textos (Text Mining) mais investigados são o reconhecimento de entidades nomeadas (REN) e extração de relações.Este trabalho foca no primeiro problema que serve de base para o segundo, isto é,primeiramente tem-se que se identificar e classificar as entidades para, em seguida,com as entidades identificas e classificadas, identificar as relações existentes entre selas, se houver.A abordagem adotada neste trabalho é baseada em técnicas recentes de aprendizado supervisionado/não supervisionado de redes neurais profundas, ou Deep Learning (DL)em inglês.Em particular, investiga-se o problema de REN usando técnicas recentes de representação densa de características (ou features, do inglês) usando DL. Dessa forma, em um primeiro momento, as frases de um corpus da área biomédica são representadas em forma de grafo graças à geração de anotações (metadados) gerados de forma automática por ferramentas de processamento de linguagem natural, tais como tokenização,parsing sintático etc. Em seguida, esses grafos são importados em um banco de dados baseada em grafo para que se possa otimizar diversas consultas que são submetidas a esta base a fim de se extrair atributos (ou features) léxicos e sintáticos das entidades(ou nós) presentes nos grafos. Com informação gerada na etapa anterior, emprega-se uma categoria de algoritmos de Deep Learning chamados Graph Embedding (GE) que mapeam a representação de nós do grafo (entidade) em uma representação densa em um espaço vetorial que possui diversas propriedades de interesse para esta pesquisa.Finalmente, faz-se uso desta representação densa de features (vetor de números reais)como entrada para algoritmos de classificação.Este trabalho apresenta um estudo experimental onde são comparados alguns dos algoritmos de GE, aliados a diversas formas de representação das frases baseadas em grafos e seus impactos na tarefa de classificação de entidades (REN), ou node classification. Os resultados experimentais obtidos são promissores alcançando nos melhores casos, mais de 90% de acurácia.
  • Imagem de Miniatura
    Item
    Avaliação entre algoritmos de filtragem colaborativa baseada em vizinhança e transferência de conhecimento para CD-CARS
    (2019) Silva, Guilherme Melo da; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/7122596102314881
    A realização de recomendações em cenários com a falta de preferências expressas por usuários é uma importante limitação para os Sistemas de Recomendação (SR). Devido a este problema pesquisas envolvendo SR de domínio cruzado (SRDC) vêm ganhando relevância, onde a filtragem colaborativa baseada (FC) é uma das técnicas mais exploradas nesta área. O sistema CD-CARS mostra que o uso de informações contextuais, disponíveis nas preferências dos usuários, pode otimizar algoritmos de FC baseada em vizinhança, técnica bastante difundida em FC para multidomínios. Embora apresentem recomendações precisas, alguns algoritmos de FC baseada em vizinhança, como o utilizado no CD-CARS, têm a limitação do uso de multidomínios apenas na ocorrência da sobreposição de usuários entre os domínios, cenário não trivial em bases de dados reais. Este trabalho apresenta uma análise comparativa entre diferentes algoritmos de recomendação envolvendo técnicas de filtragem colaborativa. Os algoritmos NNUserNgbr-transClosuredo CD-CARS (FC baseada em vizinhança) e Tracer(FC baseada em transferências de conhecimento), foram utilizados como base para os algoritmos de recomendação. Nos experimentos, os algoritmos de FC foram integrados às técnicas sensíveis ao contexto, abordadas no CD-CARS: Pré-Filtragem e Pós-Filtragem Contextual, sendo aplicados sobre dois conjuntos dedados, formados por dois domínios auxiliares e um alvo, com e sem sobreposição de usuários entre os domínios. As métricas de desempenho MAE e RMSE foram utilizadas para a avaliação dos algoritmos. Os resultados dos experimentos mostraram que o algoritmo Tracer apresentou melhores resultados, em relação ao algoritmo NNUserNgbr-transClosure, em todos os experimentos envolvendo o cenário sem a sobreposição de usuários, com e sem o uso da Pré-Filtragemou Pós-Filtragem Contextual.
  • Imagem de Miniatura
    Item
    Uma análise do impacto da experiência prévia com pensamento computacional no desempenho de estudantes em programação no ensino superior
    (2019) Silva, Emanuel Leite Oliveira da; Falcão, Taciana Pontual da Rocha; http://lattes.cnpq.br/5706959249737319; http://lattes.cnpq.br/5886730483799524
    Este trabalho se propôs a estudar o efeito do contato prévio com o Pensamento Computacional em alunos de cursos superiores em computação. O Pensamento Computacional é uma habilidade que que visa o desenvolvimento do raciocínio lógico e pensamento algorítmico de uma forma contínua e por toda a vida do indivíduo, auxiliando-o para solucionar problemas da vida pessoal e profissional utilizando as técnicas da ciência da computação. Segundo pesquisas, mais de 50% dos alunos dos cursos de computação irão evadir o curso e um dos principais motivos é a dificuldade em aprender e assimilar os conceitos básicos e avançados da programação, ficando desmotivados.Com isso, este trabalho investigou a viabilidade do uso do pensamento computacional para ajudar esses alunos com dificuldades no aprendizado de programação. Portanto,foram identificados dois perfis de alunos, que tiveram contato com o Pensamento Computacional antes e depois de cursarem Programação, e aplicados questionários para avaliar as perspectivas que eles tiveram sobre a disciplina e o seu benefício, se foi produtivo ou não o uso do Pensamento Computacional. Também foram entrevista dos dois professores do curso de Licenciatura em Computação da UFRPE para examinar a perspectiva deles em relação ao Pensamento Computacional no desempenho dos alunos, comparando os alunos que tiveram o contato antes e depois de cursarem Programação. Sob a perspectiva dos alunos o uso do Pensamento Computacional os auxiliam no desenvolvimento cognitivo,melhorando o raciocínio lógico e o pensamento algorítmico, e no aprendizado de Programação. Os professores creem que o Pensamento Computacional prepara cognitivamente os alunos para Programação,reduzindo o esforço em reaprender os conceitos básicos e que veem essa abordagem como um aprimoramento para os alunos.
  • Imagem de Miniatura
    Item
    Classificação de imagens de textura geradas por gráficos de recorrências no problema de pessoas sofrendo ataques epiléticos
    (2019) Queiroz, Danielly de Moura Borba; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/7461629772562910
    A epilepsia é uma condição neurológica caracterizada pela ocorrência de crises epilépticas que se repetem em intervalos variáveis. Essas crises são manifestações clínicas de uma descarga anormal de neurônios, que são células que compõem o cérebro.Algumas particularidades tornam os diagnósticos precoces da epilepsia um grande desafio, até mesmo para clínicos mais experientes. Como auxilio médico, existem exames como o eletroencefalograma (EEG) representados por séries temporais bastante utilizado no diagnóstico da epilepsia. As séries temporais estão presentes em várias áreas de estudo, como a medicina, biologia, economia, entre outras. Seus gráficos expõem padrões ocultos e mudanças estruturais nos dados, como possuem padrões de textura bem definidos que podem ser identificados adequadamente por métodos de extração de textura. Além disso, existem diversas ferramentas para extração de informações das séries temporais, uma delas é a imagem de recorrência, que usualmente é utilizada para verificar a mudança de um padrão no sinal. Este trabalho apresenta um estudo de descritores de texturas e classificadores em imagens de pessoas saudáveis e epiléticas geradas por imagens de recorrências. Os descritores de texturas usando neste estudo foram: Padrões Binários Locais (LBP), Quantização de Fase Lo-cal (LPQ) e o Banco de Filtro de Gabor. Até o melhor do nosso conhecimento, ainda não foi realizado nenhum estudo aplicando-se esses descritores em imagens de recorrência na base utilizada neste trabalho. A avaliação é realizada através da taxa média de acerto, precisão, recall e f-measure resultante dos seguintes classificadores:Ran-dom Forest, eSupport Vector Machine(SVM). Os experimentos demonstraram que o classificador SVM usando o descritor LPQ mostrou resultados promissores, obtendo92,1% de média de acerto, recall e f-measure e para precisão obteve 92,26%.
  • Imagem de Miniatura
    Item
    Projeto integrado de redes ópticas de longa distância e Metropolitanas usando algoritmos de inteligência computacional: estudo de caso para o estado de Pernambuco
    (2017) Nascimento, Jorge Candeias do; Araújo, Danilo Ricardo Barbosa de; http://lattes.cnpq.br/2708354422178489; http://lattes.cnpq.br/8065833426856653
    Nos dias atuais, várias tecnologias de redes com diferentes preços e adequações vem surgindo no mercado. Um projeto de topologia de rede envolve várias métricas, as métricas são utilizadas para avaliar um projeto. Na avaliação utilizamos métricas como, por exemplo, as métricas de robustez (que auxiliam na capacidade da rede de se recuperar de uma falha), probabilidade de bloqueio e consumo energético. O ideal para otimizar a infraestrutura, em um projeto de redes, seria usar as tecnologias mais recentes, só as mais eficientes, mesmo que tais tecnologias sejam mais caras. Entretanto, das métricas a serem consideradas neste tipo de projeto, uma delas é o custo (capital empregado). Portanto, nem sempre é viável usar o que há de mais caro no mercado. Muitas questões técnicas podem ajudar no controle das métricas destes projetos, dentre elas está a topologia da rede (interconexão do links). Algoritmos evolucionários multiobjetivos (algoritmos inspirados na evolução das espécies) vem sendo estudados no estado da arte para a concepção de topologias de rede. Ao mesmo tempo, algoritmos de clustering (algoritmos especializados em separar amostras em grupos) vem sendo usados em outros tipos de estudos em redes. Este estudo teve por objetivo fazer o uso de algoritmos de inteligência computacional na construção de um projeto de topologia de redes, utilizando o estado de Pernambuco como um estudo de caso. Em uma primeira etapa do estudo, foi usado um algoritmo de clustering na divisão do estado em grupos. A intenção dessa parte do trabalho foi de medir a cobertura da rede em relação a toda a dimensão do estado, e, dessa forma garantir a completude da rede. Além disso a etapa de clustering também objetivou propor um modelo de controle de custos através de mescla de diferentes tecnologias para a rede (Passiva ou ativa) dependendo da função do trecho de rede. Em uma segunda etapa, foi usado um algoritmo evolucionário multiobjetivo para compor diversas topologias de redes que atendiam aos clusters criados na etapa anterior. Esse algoritmo, evoluiu as diversas topologias de rede em função de melhorar quatro métricas, Probabilidade de Bloqueio, Custo, Consumo energético e Conectividade algébrica. O algoritmo multiobjetivo foi concebido como um algoritmo memético, e, após um conjunto de execuções, foram comparados os desempenhos do algoritmo com e sem a alteração. Os resultados dos testes, na primeira etapa, mostraram que as técnicas de clustering são bastante eficientes e adaptáveis ao objetivo proposto tanto no que se diz respeito a completude da rede quanto no controle de custos. Já na segunda etapa, ou etapa de busca multiobjetivos, foi constatado, através do uso de um indicador de qualidade (o hypervolume), que houve melhora do algoritmo em relação a convergência e a diversidade à curva de Pareto, com o uso em sua nova forma como algoritmo memético.
  • Imagem de Miniatura
    Item
    Desenvolvimento de um algoritmo baseado em lógica fuzzy para segmentação de lesões em imagens de mamografia digital
    (2018) Bezerra, Kallebe Felipe Pereira; Cordeiro, Filipe Rolim; http://lattes.cnpq.br/4807739914511076; http://lattes.cnpq.br/3067789764865525
    O câncer de mama tem sido um problema crescente para mulheres do mundo todo. De acordo com a Organização Mundial de Saúde (OMS), ele é o tipo de câncer mais comum entre mulheres, com mortalidade crescente, se tornando um dos tipos mais fatais de câncer em todo o mundo. No Brasil, ele é a principal causa de morte por câncer entre as mulheres, sendo estimado 59.000 casos novos de câncer em 2018, com uma incidência de cerca de 59,70 casos de cada 100 mil mulheres. Vários métodos de prevenção têm sido desenvolvidos, mas um dos métodos mais eficazes para a detecção de lesão é o diagnóstico através da mamografia digital. No entanto, a interpretação da mamografia pode ser uma tarefa difícil até mesmo para um especialista, uma vez que a análise é afetada por diversos fatores, tais como a qualidade da imagem, experiência do radiologista e tipo de lesão. É estimado que 12% a 30% dos casos de câncer de mama deixam de ser detectados devido à má interpretação mamográfica. O trabalho proposto tem como objetivo principal o estudo e desenvolvimento de uma técnica de segmentação de tumores em imagens de mamografia, utilizando lógica Fuzzy. Têm-se como objetivo inserir a abordagem Fuzzy no algoritmo Random Walker, a fim de propor uma nova solução para segmentação de lesões. Por fim, tem-se como objetivo realizar comparação com técnicas do estado da arte. O trabalho proposto utiliza a base de dados Mini-MIAS para realizar a avaliação das técnicas. A base consiste em 322 imagens de mamografia da visão médio lateral oblíqua, obtido de 161 pacientes. Entretanto, apenas 57 das imagens contem lesão. Os resultados mostraram que a abordagem proposta do algoritmo Random Walker com lógica Fuzzy, usado para segmentação do tumor, obteve melhores resultados para a maioria das métricas, em comparação com o algoritmo Random Walker clássico, e diminuiu o esforço do usuário necessário na etapa de inicialização do algoritmo.
  • Imagem de Miniatura
    Item
    Segmentação de banhistas utilizando algoritmos de agrupamento com seleção automática do número de grupos em regiões litorâneas
    (2019) Moura, Allan Alves de; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/3319938637009294
    O crescente aumento de ataques de tubarões vem assustando a população das regiões litorâneas, impossibilitando a tomada de banho em certos locais. Em caso de ataque, muitas vezes uma ação para salvar a vítima é tomada somente após o ocorrido do incidente, em que um guarda-vidas tentará socorre-la. Para mitigar estes acontecimentos, foi pensado em uma ferramenta de auxílio aos guarda-vidas que permitissem aos mesmos agir antes que acidentes pudessem ocorrer, avisando o profissional caso algum banhista ultrapasse uma determinada zona de segurança. O primeiro passo para realização desta ferramenta é a segmentação das imagens de praia em busca de agrupar partes com características visualmente semelhantes afim de encontrar as pessoas dentro do mar. Para isso, o objetivo deste trabalho é estudar e encontrar um bom algoritmo de segmentação de imagens com seleção automática do número de grupos para evitar a necessidade do controle de parâmetros a fim de separar a foto em regiões ou segmentos. Este algoritmo será utilizado para a implementação da primeira etapa desta ferramenta de auxílio aos guarda-vidas em busca de regiões da imagem que representem banhistas. Técnicas de pré-processamento de imagens como a remoção da faixa de praia foram avaliadas, como também a avaliação de sistemas de cores diferentes na representação da imagem a fim de realizar a comparação entre todos esses fatores. A combinação dos algoritmos e sistemas de cores foram avaliados com e sem a remoção da faixa de praia. Os algoritmos analisados foram: Hierárquico aglomerativo, hierárquico divisivo, X-means, Auto group segmentation e segmentação automática de imagens coloridas. Todos eles foram aplicados pra três tipos diferentes de vetores de características, compostos por sistema de cor RGB(red, green e blue), LAB e a combinação de RGB + LAB. O resultado mais promissor, após avaliação visual das imagens, comportamento dos algoritmos e resultados do índice de Dunn, foi obtido utilizando o algoritmo de segmentação de imagens coloridas com vetor de características composto de RGB + LAB, totalizando para o índice de Dunn 1.5245 de média para todas as imagens, aplicando a remoção de praia depois da execução do algoritmo.
  • Imagem de Miniatura
    Item
    Classificação de banhistas na faixa segura de praia
    (2018) Silva, Ricardo Luna da; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/3088880066515750
    Visando evitar riscos em ambientes aquáticos,afogamentos e ataque de tubarão,áreas de praia devem ser monitoradas constantemente. Quando necessário, as equipes de resgate devem responder com velocidade ao caso. Este trabalho visa propor um algoritmo de classificação de pessoas como parte de um sistema para monitoramento automáticoemáreasdepraia.Certosfatoresdoambientesãobastantedesafiadores, como variação de brilho em dias nublados, a posição do sol em diferentes momentos do dia, dificuldade em segmentação de imagens, pessoas submersas e posição afastada da câmera. Para esse tipo de problema na literatura é comumente encontrado, para detecção de pessoas, o uso de descritores de imagem em conjunto com um classificador. Este trabalho realiza um estudo em imagens de praia usando os seguintes descritores de imagem e suas combinações em pares: Momentos de Hu, Momentos de Zernike,Filtro de Gabor,Histograma de Gradientes Orientados(HOG),Padrões Binários Locais(LBP) e Haar. Além disso,uma técnica de redução de dimensionalidade (PCA)é aplica para seleção de características. A taxa de detecção é avaliada com os seguintes classificadores :Random Forest, classificador e em cascata e Support Vector Machine(SVM) comkernel linear e radial.Os experimentos demonstraram que o classificador SVM com kernel radial usando os descritores HOG e LBP aplicando a técnica PCA mostrou resultados promissores, obtendo 90,31% de precisão.