TCC - Bacharelado em Ciência da Computação (Sede)
URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/415
Navegar
Item Abordagem híbrida e independente de domínio para extração de aspectos na análise de sentimentos(2018) Lins, André Lucas Machado; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/3233947254235611As opiniões são centrais a quase todas as atividades humanas e são chaves influenciadoras do nosso comportamento. Nossas crenças e percepções da realidade, e as escolhas que fazemos, são em grau considerável, condicionadas a como os outros veem e avaliam o mundo. Tendo em vista esta afirmação a área da Análise de Sentimentos ou Mineração de Opinião vem crescendo constantemente, a possibilidade de entender os sentimentos e opiniões que pessoas expressam sobre determinados assuntos enchem os olhos de todos. A Análise de Sentimentos(AS) é o estudo computacionaldasopiniões,atitudeseemoçõesdaspessoasemrelaçãoaumaentidade. A literatura sobre Análise de Sentimentos é bastante vasta, existindo inúmeras variações de como realizar essa tarefa. Uma dessas variações da AS que vem recebendo bastanteatençãodospesquisadoresnosúltimosanoséaAnálisedeSentimentosbaseada em Aspectos(ASBA). Nessa abordagem os sentimentos são identificados em relação a aspectos de sentenças, a fim de discernir os tópicos que são tratados em cada sentença ou documento. A ASBA é dividida em três grandes tarefas que são a extração,classificaçãoeagregaçãodoaspecto,sendoaextraçãodoaspectocomoa tarefa mais complexa. Existem muitas abordagens para resolver a tarefa da extração de aspecto para ASBA, porém muitas dessas são abordagens dependentes de um domínio, o que dificulta replicar estas abordagens para outros domínios que não possuam as mesmas características. Logo, este trabalho visa propor um método híbrido e independente de domínio para extração de aspectos para ASBA, que consiste em quatro grandes etapas. A primeira identifica todos os aspectos candidatos a partir de regrassemânticasparacadasentença.Apósissoégeradoumléxicodetodasassentenças contendo os aspectos e sentimentos mais relevantes. Então segue-se a poda dos aspectos candidatos utilizando regras semânticas através do léxico de aspectos e sentimentos criados e, por último, é feita a seleção dos aspectos restantes através de um limiar dinâmico. Essa proposta foi avaliada nas bases de dados do Semeval 2016, contendo opiniões sobre vários aspectos relacionados com restaurantes e laptops, utilizando as métricas de avaliação mais utilizadas na literatura. Os resultados experimentais obtidos sugerem que o método proposto é competitivo quando comparado a vários outros métodos dependentes e independentes de domínio do estado da arte.Item An AMR-based extractive summarization method for cohesive summaries(2021) Silva, Pedro Assis Xavier; Lima, Rinaldo José de; Espinasse, Bernard; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/0509757461700562Item Graph Embeddings para Node Classification em representação baseada em grafos de frases em linguagem natural(2019) Silva, João Marcos Nascimento da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/5276914899067852Devido a grande quantidade de pesquisas desenvolvidas na área biomédica e na disponibilidade de enormes bases de dados sobre entidades biomédicas, incluindo proteínas, genes e vírus, vem a necessidade de se poder indexar de forma automática tais bases de conhecimento humano.Tal necessidade tem levado ao desenvolvimento e ferramentas computacionais para auxiliar o pesquisador na recuperação de informações específicas envolvendo certas proteínas e suas relações. Neste contexto, dois dos principais problemas na área biomédica envolvendo técnicas de Mineração de Textos (Text Mining) mais investigados são o reconhecimento de entidades nomeadas (REN) e extração de relações.Este trabalho foca no primeiro problema que serve de base para o segundo, isto é,primeiramente tem-se que se identificar e classificar as entidades para, em seguida,com as entidades identificas e classificadas, identificar as relações existentes entre selas, se houver.A abordagem adotada neste trabalho é baseada em técnicas recentes de aprendizado supervisionado/não supervisionado de redes neurais profundas, ou Deep Learning (DL)em inglês.Em particular, investiga-se o problema de REN usando técnicas recentes de representação densa de características (ou features, do inglês) usando DL. Dessa forma, em um primeiro momento, as frases de um corpus da área biomédica são representadas em forma de grafo graças à geração de anotações (metadados) gerados de forma automática por ferramentas de processamento de linguagem natural, tais como tokenização,parsing sintático etc. Em seguida, esses grafos são importados em um banco de dados baseada em grafo para que se possa otimizar diversas consultas que são submetidas a esta base a fim de se extrair atributos (ou features) léxicos e sintáticos das entidades(ou nós) presentes nos grafos. Com informação gerada na etapa anterior, emprega-se uma categoria de algoritmos de Deep Learning chamados Graph Embedding (GE) que mapeam a representação de nós do grafo (entidade) em uma representação densa em um espaço vetorial que possui diversas propriedades de interesse para esta pesquisa.Finalmente, faz-se uso desta representação densa de features (vetor de números reais)como entrada para algoritmos de classificação.Este trabalho apresenta um estudo experimental onde são comparados alguns dos algoritmos de GE, aliados a diversas formas de representação das frases baseadas em grafos e seus impactos na tarefa de classificação de entidades (REN), ou node classification. Os resultados experimentais obtidos são promissores alcançando nos melhores casos, mais de 90% de acurácia.
