Uma metodologia para a avaliação de desempenho e custos do treinamento de redes neurais em ambientes de nuvem

Imagem de Miniatura

Data

2024-03-07

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Deep neural networks are solutions to problems involving pattern recognition and several works try to find ways to optimize the performance of these networks. This optimization requires suitable hardware to be implemented, hardware that can be very expensive for small and medium-sized organizations. The objective of this work is to propose a methodology to evaluate the performance and cost of training neural networks, considering the factors that most impact training time and evaluate the total financial cost of the environment for this task. In this sense, it was observed that factors such as the size of the input image and the network architecture have a great impact on the training time metric and consequently on the total cost.

Descrição

Redes neurais profundas são soluções para problemas que envolvem reconhecimento de padrões e diversos trabalhos tentam encontrar maneiras de otimizar o desempenho dessas redes. Essa otimização necessita de hardware adequado para ser implementada, hardware esse que pode ser muito custoso para pequenas e médias organizações. O objetivo deste trabalho é propor uma metodologia para avaliar o desempenho e custo do treinamento de redes neurais, considerando os fatores mais impactantes no tempo de treinamento e avaliar o custo financeiro total do ambiente para essa tarefa. Nesse sentido, observou-se que fatores como o tamanho da imagem de entrada e a arquitetura da rede tem grande impacto na métrica de tempo de treinamento e por consequência no custo total.

Palavras-chave

Redes neurais (Computação), Aprendizado do computador, Avaliação de desempenho, Computação em nuvem

Referência

MOURA FILHO, Cláudio Márcio de Araújo. Uma metodologia para a avaliação de desempenho e custos do treinamento de redes neurais em ambientes de nuvem. 2024. 16 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2024.

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como openAccess