A comprehensive software aging analysis in LLMs-based systems

dc.contributor.advisorAndrade, Ermeson Carneiro de
dc.contributor.advisorLatteshttp://lattes.cnpq.br/2466077615273972
dc.contributor.authorSantos, César Henrique Araújo dos
dc.contributor.authorLatteshttp://lattes.cnpq.br/9618931332191622
dc.date.accessioned2025-07-25T18:42:54Z
dc.date.issued2025
dc.degree.departamentcomputacao
dc.degree.graduationlicenciatura em computacao
dc.degree.levelbachelor's degree
dc.degree.localRecife
dc.description.abstractLarge language models (LLMs) are increasingly popular in academia and industry due to their wide applicability across various domains. With their rising use in daily tasks, ensuring their reliability is crucial for both specific tasks and broader societal impact. Failures in LLMs can lead to serious consequences such as interruptions in services, disruptions in workflow, and delays in task completion. Despite significant efforts to understand LLMs from different perspectives, there has been a lack of focus on their continuous execution over long periods to identify signs of software aging. In this study, we experimentally investigate software aging in LLM-based systems using Pythia, OPT, and GPT Neo as the LLM models. Through statistical analysis of measurement data, we identify suspicious trends of software aging associated with memory usage under various workloads. These trends are further confirmed by the Mann-Kendall test. Additionally, our process analysis reveals potential suspicious processes that may contribute to memory degradation.
dc.format.extent8 f.
dc.identifier.citationSANTOS, César Henrique Araújo dos. A comprehensive software aging analysis in LLMs-based systems. 2025. 8 f. Trabalho de Conclusão de Curso (Licenciatura em Computação) - Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2025.
dc.identifier.urihttps://arandu.ufrpe.br/handle/123456789/7434
dc.language.isoen_US
dc.publisher.countryBrazil
dc.publisher.initialsUFRPE
dc.rightsopenAccess
dc.rights.licenseAttribution-ShareAlike 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subjectEnvelhecimento de software
dc.subjectProcessamento de linguagem natural (Computação)
dc.subjectSistemas de memória de computadores
dc.subjectInteligência artificial
dc.titleA comprehensive software aging analysis in LLMs-based systems
dc.typebachelorThesis

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
tcc_art_cesarhenriquearaujodossantos.pdf
Tamanho:
2.64 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.87 KB
Formato:
Item-specific license agreed upon to submission
Descrição: