TCC - Licenciatura em Matemática (Sede)

URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/466

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    O Teorema da Função Inversa e o Lema de Morse
    (2025-08-07) Leite Júnior, Alexandre Santana; Carvalho, Gilson Mamede de; http://lattes.cnpq.br/0044877127514130; http://lattes.cnpq.br/8136325149058850
    Neste trabalho estudamos o Teorema da Função Inversa, uma das ferramentas centrais da análise matemática, e o utilizamos como base para apresentar e demonstrar o Lema de Morse. Para fundamentar esses resultados, desenvolvemos previamente os conceitos necessários, referentes à topologia do Rn, a continuidade e a diferenciabilidade de funções, com ênfase nos pontos críticos, no gradiente e no Teorema de Schwarz. Em seguida, demonstramos o Teorema da Função Inversa, o qual garante a existência de difeomorfismos locais sob condições adequadas, e o utilizamos para construir uma demonstração rigorosa do Lema de Morse. Esse Lema mostra que funções de classe Ck (k ≥ 3), em vizinhanças de pontos críticos não degenerados, podem ser localmente expressas como formas quadráticas por meio de mudanças de coordenadas de classe Ck−2.
  • Imagem de Miniatura
    Item
    Séries de Fourier e equações diferenciais parciais: a equação do calor e a equação de Laplace
    (2025-02-14) Silva, Mateus Gomes da; Araújo, Yane Lísley Ramos; http://lattes.cnpq.br/6642941380570085; http://lattes.cnpq.br/8050156871573370
    Neste trabalho nosso objetivo principal é estudarmos a existência e a unicidade de solução para problemas envolvendo a equação do calor e a equação de Laplace. Para isso, inicialmente, exibimos alguns conceitos preliminares relacionados a propriedades especiais das funções, sequências e séries de funções, a classe das funções que utilizamos ao longo do trabalho e alguns resultados de cálculo avançado. Em seguida, apresentamos conceitos básicos relacionados a teoria das equações diferenciais parciais. Posteriormente abordamos um estudo detalhado das séries de Fourier, fundamentais na obtenção de solução dos problemas citados. Por fim, asseguramos sob certas condições a existência de solução para os problemas em estudo e, fazendo uso do principio do máximo, garantimos a unicidade desta solução.
  • Imagem de Miniatura
    Item
    Espaços métricos: continuidade, completude e compacidade
    (2021-02-19) Oliveira, Alessandra Arcanjo Lisboa de; Araújo, Yane Lísley Ramos; Carvalho, Gilson Mamede de; http://lattes.cnpq.br/0044877127514130; http://lattes.cnpq.br/6642941380570085; http://lattes.cnpq.br/2572639684291501
    Este trabalho tem como objetivo principal estudar os conceitos de continuidade, completude e compacidade na teoria dos espaços métricos. Tais espaços são conjuntos não vazios nos quais a noção de distância entre seus elementos está bem definida. O presente estudo é interessante na medida em que os resultados aqui apresentados generalizam alguns resultados da teoria da continuidade e compacidade dos espaços Euclidianos, Rn, com n [pertence] N. Além disso, tais resultados se mostram válidos em espaços mais abstratos como alguns espaços de sequências ou de funções, cuja noção de distância foge da intuição e acarreta em fatos intrigantes, como o fato de que bolas fechadas não necessariamente sejam compactas.