TCC - Bacharelado em Ciências Biológicas (Sede)
URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/412
Navegar
Item Microrganismos fotossintetizantes como potencial fonte de moléculas bioativas contra Leishmania spp.: uma revisão(2023-08-14) Silva, Sabrina Swan Souza da; Bezerra, Raquel Pedrosa; Andrade, Alexsandra Frazão de; http://lattes.cnpq.br/8560904255362766; http://lattes.cnpq.br/1466206759539320; http://lattes.cnpq.br/8504258200413633Leishmaniasis are infectious diseases caused by protozoan parasites of the genus Leishmania and represent a serious public health problem with global impact, affecting thousands of people every day. The drugs currently available for treatment are based on pentavalent antimonials that have adverse side effects with cases of resistance and ineffectiveness being frequently reported. Thus, photosynthetic microorganisms (microalgae and cyanobacteria) are a wide source of compounds that can be used in the treatment of various diseases, and due to their rapid growth combined with their minimum nutritional requirements. they have a reduced production cost, making them strong candidates as raw material for the development of new medicines. The search was conducted in databases such as Google Scholar, ScienceDirect, National Center for Biotechnology Infozmation (NCBI) and Virtual Health Library (VHL) using the terms alone and in combination to identify the articles: cyanobacteria, microalgae, photosynthetic microorganisms, bioactives, antileishmanial, antiprotozoal. The inclusion criteria for this review were original articles describing the antiparasitic activity of extracts or compounds isolated from cyanobacteria and microalgae against Leishmania infection. Bibliographical references of the included articles were checked to identify possible eligible articles. In total, eleven articles were selected and analyzed based on the species of microorganisms, bioactive compounds, and their minimum concentration to reduce 50% of the parasite population (IC5o). Cyanobacteria were the most studied group, with an emphasis on the genus Lyngbya, while there was only one study using three genera of microalgae (Nannochloris spp., Picochlorum sp. and Desmochloris sp.). The in vitro studies found reported the use of peptides as the main bioactive with anti-Leishmania activity, with the ticonamide A peptide, which presented the lowest ICso value (1.14 FM), and the almiramide B and almiramide C peptides, the most selective for the parasite, with IS values of 21.7 and 17.4, respectively. Therefore, peptides from photosynthetic microorganisms are a promising source for the development of future pharmacological products against Leishmania.