TCC - Bacharelado em Sistemas da Informação (UAEADTec)
URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/2881
Navegar
1 resultados
Resultados da Pesquisa
Item Avaliação de algoritmos multi-classe para classificação de solicitações enviadas a Ouvidoria Geral do Estado de Pernambuco(2021-03-29) Carvalho, Luiz Henrique Teixeira; Ferreira, Jeneffer Cristine; http://lattes.cnpq.br/3000364145302421The Ombudsman’s Office is a public agency that covers the entire state of Pernambuco and every day receives several requests with the most varied themes involving all other organs of the state, with that in certain times of the year, these requests can come to burden the resources of State. The main objective of this work is to apply the multi-class classification algorithms to the data obtained from the transparency portal, and to try to predict requests sent to the Ombudsman’s Office of the State of Pernambuco To obtain data from the Ombudsman’s Office of the State of Pernambuco, data scraping was carried out on the Pernambuco Transparency Portal of Pernambuco. Data for the years 2017, 2018 and 2019 were obtained. The algorithms Decision Tree, Random Forest, Bagging and kNN were applied to the ombudsman data. The results showed that the automatic data classification algorithms, particularly the Decision Tree, Random Forest, Bagging algorithms achieved 55 percent and 32 percent in the type and organ classes respectively, taking advantage of one hit every two attempts in the type class and one hit every three attempts in the organ class. The algorithms were also evaluated about their performance in time of model creation and training, with the Decision Tree algorithm as the most performative.