An AMR-based extractive summarization method for cohesive summaries

dc.contributor.advisorLima, Rinaldo José de
dc.contributor.advisor-coEspinasse, Bernard
dc.contributor.advisorLatteshttp://lattes.cnpq.br/7645118086647340
dc.contributor.authorSilva, Pedro Assis Xavier
dc.contributor.authorLatteshttp://lattes.cnpq.br/0509757461700562
dc.date.accessioned2024-02-15T16:03:31Z
dc.date.available2024-02-15T16:03:31Z
dc.date.issued2021
dc.degree.departamentComputação
dc.degree.graduationBacharelado em Ciência da Computação
dc.degree.grantorUniversidade Federal Rural de Pernambuco
dc.degree.levelGraduacao
dc.degree.localRecife
dc.description.abstractxThe main goal of automatic text summarization is condensing the original text into a shorter version, preserving the information content and general meaning. The extractive summarization, one of the main approaches for automatic text summarization, consists to select the most relevant sentences of a document, and generate a summary. This paper proposes a new mono-document extractive summarization method using a semantic representation of the sentence of a document expressed in AMR (Abstract Meaning Representation). In this method, AMR semantic representation is used to capture the most important concepts of each sentence (in core semantic terms), and a concept-based Integer Linear Programming (ILP) approach to select the most informative sentences improving both relevance and text cohesion of the summary. Two datasets proposed by DUC (2001 and 2002) were used to evaluate the effectiveness of our method on extrative summarirazion and commparing it with other state-of-the-art summary systems.
dc.format.extent9 f.
dc.identifier.citationSILVA, Pedro Assis Xavier. An AMR-based extractive summarization method for cohesive summaries. 2021. 9 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2021.
dc.identifier.darkflstrmvhttps://n2t.net/ark:/57462/001300000k9q8
dc.identifier.urihttps://repository.ufrpe.br/handle/123456789/5615
dc.language.isoen
dc.publisher.countryBrasil
dc.rightsopenAccess
dc.rights.licenseAtribuição 4.0 Internacionalpt_BR
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.pt-br
dc.subjectLinguagem de programação (Computadores)
dc.subjectComputação semântica
dc.subjectAbstract Meaning Representation (AMR)
dc.subjectSummarization
dc.titleAn AMR-based extractive summarization method for cohesive summaries
dc.typebachelorThesis

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
tcc_art_pedroassisxaviersilva.pdf
Tamanho:
353.36 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.87 KB
Formato:
Item-specific license agreed upon to submission
Descrição: