Comparative Analysis of Data Augmentation Techniques in Hand Gesture Recognition

dc.contributor.advisorMacario Filho, Valmir
dc.contributor.advisorLatteshttp://lattes.cnpq.br/4346898674852080
dc.contributor.authorSouza, Diego Rafael Ferreira de
dc.contributor.authorLatteshttp://lattes.cnpq.br/0925751641833600
dc.date.accessioned2025-06-04T11:09:48Z
dc.date.issued2025-03-18
dc.degree.departamentcomputacao
dc.degree.graduationbacharelado em ciencia da Computacao
dc.degree.levelbachelor's degree
dc.degree.localRecife
dc.description.abstractHand gesture recognition has gained significant attention due to its widespread applications in human-computer interaction, virtual reality, and assistive technologies. However, the scarcity of large, labeled datasets poses challenges such as overfitting and limited model generalization. To address this, we systematically evaluate 13 classical and six state-of-the-art (SOTA) data augmentation techniques for hand gesture recognition, conducting experiments on HGR1, OUHANDS, LIBRASUEFS, and EgoHands using the HGR-Net CNN architecture. Our results show that contrast-based augmentations (e.g., Solarize, Invert) improved accuracy by up to 21.16%, while mixing-based methods (e.g., MixUp, CutMix) often reduced performance, likely due to excessive distortion of gesture structures. Additionally, combining the best-performing augmentations was critical for maximizing accuracy across all datasets. However, these combinations did not always produce additive improvements, underscoring the importance of dataset-specific augmentation strategies for achieving optimal model performance.
dc.format.extent16 f.
dc.identifier.citationSOUZA, Diego Rafael Ferreira de. Comparative Analysis of Data Augmentation Techniques in Hand Gesture Recognition. 2025. 16 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2025.
dc.identifier.urihttps://arandu.ufrpe.br/handle/123456789/7234
dc.language.isoen_US
dc.publisher.countryBrazil
dc.publisher.initialsUFRPE
dc.rightsopenAccess
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectGesture recognition (Computer science)
dc.subjectReconhecimento de gestos (Ciência da computação)
dc.subjectData augmentation
dc.subjectAumento de dados (Estatística)
dc.subjectRedes neurais (Computação)
dc.subjectAprendizado do computador
dc.titleComparative Analysis of Data Augmentation Techniques in Hand Gesture Recognition
dc.typebachelorThesis

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
tcc_art_diegorafaelferreiradesouza.pdf
Tamanho:
3.12 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.87 KB
Formato:
Item-specific license agreed upon to submission
Descrição: