Forgetting noisy labels: post-training mitigation via machine unlearning
Nenhuma Miniatura Disponível
Data
2025-08-06
Autores
Lattes da Autoria
Orientação Docente
Lattes da Orientação Docente
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Noisy labels remain a critical challenge for training deep neural networks, often classifying generalization performance due to incorrect label memorization. Approaches to mitigating label noise typically require complete retraining after identifying the noise samples, which can be computationally expensive, especially in large-scale datasets. This work investigates the use of Machine Unlearning to deal with noise labels in post-training scenarios efficiently. We perform extensive experiments on synthetic and real-world materials noisy datasets including CIFAR-10, CIFAR-100 and Food101-N, evaluating various noise types such as symmetric, asymmetric, instance-dependent, and open set noise. Our results demonstrate that MU, particularly through the SalUn method, achieves accuracy comparable to full recycling, significantly reducing computing time. Furthermore, we analyze the impact of fun learning on different fractions of noise samples, showing that partial unlearning can already lead to substantial improvements. findings highlight the potential of Machine Unlearning as a practical and scalable solution to mitigate training with noisy labels.
Resumo em outro idioma
Descrição
Palavras-chave
Referência
SANTANA, João Lucas Pinto de. Forgetting noisy labels: post-training mitigation via machine unlearning. 2025. 30 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2025.
Identificador dARK
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como openAccess

