Existência e unicidade de solução para problemas envolvendo o operador Laplaciano

Imagem de Miniatura

Data

2019-12-17

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

In this work we approach some basic concepts related to the theory of partial differential equations guaranteeing the existence of solution for problems involving the Laplacian operator. Initially, we use the method of variable separation and Fourier Analysis tools to ensure the existence of classical solutions to Dirichlet problems in the rectangle and unit disk involving the Laplace equation, as well as a maximum principle to ensure the uniqueness of the solution. Then, we use results from Functional Analysis and Sobolev spaces to ensure under certain conditions that there is only one weak solution to the Dirichlet problem involving the Poisson equation.

Descrição

No presente trabalho abordamos alguns conceitos básicos relativos à teoria das equações diferenciais parciais garantindo a existência de solução para problemas envolvendo o operador Laplaciano. Inicialmente, utilizamos o método de separação de variáveis e ferramentas da Análise de Fourier para assegurarmos a existência de solução clássica para problemas de Dirichlet no retângulo e no disco unitário envolvendo a equação de Laplace, bem como um princípio do máximo para garantirmos a unicidade da solução. Em seguida, utilizamos resultados da Análise Funcional e dos espaços de Sobolev para garantirmos sob certas condições a existência de uma única solução fraca para o problema de Dirichlet envolvendo a equação de Poisson.

Palavras-chave

Análise matemática, Equações diferenciais parciais, Solução de problemas, Dirichlet, Problemas de

Referência

NUNES, Thays Ingrid dos Santos. Existência e unicidade de solução para problemas envolvendo o operador Laplaciano. 2019. 89 f. Trabalho de Conclusão de Curso (Licenciatura em Matemática) - Departamento de Matemática, Universidade Federal Rural de Pernambuco, Recife, 2019.

Avaliação

Revisão

Suplementado Por

Referenciado Por