Classificação de banhistas na faixa segura de praia

dc.contributor.advisorMacário Filho, Valmir
dc.contributor.advisorLatteshttp://lattes.cnpq.br/4346898674852080
dc.contributor.authorSilva, Ricardo Luna da
dc.contributor.authorLatteshttp://lattes.cnpq.br/3088880066515750
dc.date.accessioned2019-01-16T19:43:50Z
dc.date.available2019-01-16T19:43:50Z
dc.date.issued2018
dc.degree.departamentComputação
dc.degree.graduationBacharelado em Ciência da Computação
dc.degree.grantorUniversidade Federal Rural de Pernambuco
dc.degree.levelGraduacao
dc.degree.localRecife
dc.description.abstractVisando evitar riscos em ambientes aquáticos,afogamentos e ataque de tubarão,áreas de praia devem ser monitoradas constantemente. Quando necessário, as equipes de resgate devem responder com velocidade ao caso. Este trabalho visa propor um algoritmo de classificação de pessoas como parte de um sistema para monitoramento automáticoemáreasdepraia.Certosfatoresdoambientesãobastantedesafiadores, como variação de brilho em dias nublados, a posição do sol em diferentes momentos do dia, dificuldade em segmentação de imagens, pessoas submersas e posição afastada da câmera. Para esse tipo de problema na literatura é comumente encontrado, para detecção de pessoas, o uso de descritores de imagem em conjunto com um classificador. Este trabalho realiza um estudo em imagens de praia usando os seguintes descritores de imagem e suas combinações em pares: Momentos de Hu, Momentos de Zernike,Filtro de Gabor,Histograma de Gradientes Orientados(HOG),Padrões Binários Locais(LBP) e Haar. Além disso,uma técnica de redução de dimensionalidade (PCA)é aplica para seleção de características. A taxa de detecção é avaliada com os seguintes classificadores :Random Forest, classificador e em cascata e Support Vector Machine(SVM) comkernel linear e radial.Os experimentos demonstraram que o classificador SVM com kernel radial usando os descritores HOG e LBP aplicando a técnica PCA mostrou resultados promissores, obtendo 90,31% de precisão.
dc.description.abstractxIn order to avoid risks in aquatic environments, drownings and shark attack, beach areas should be constantly monitored. When necessary, rescue workers must respond quickly to the case. This work aims to propose a classification algorithm for people as part of a system for automatic monitoring in beach areas.Certain environmental factors are quitech allenging, such as varying brightness on cloudy days,the position of the sun at different times of the day, difficulty in segmenting images, submerged people, and position away from the camera. For this type of problem in the literature is commonly found, for people detection, the use of image descriptors in conjunction with a classifier. This work performs a beach image study using the following image descriptors and their combinations in pairs: Hu Moments, Zernike Moments, Gabor Filter, Guided Gradient Histogram(HOG),Local Binary Patterns(LBP) and Haar.Inaddition,a dimensionality reduction technique (PCA) is applied for feature selection. The detection rate is evaluated with the following classifiers: text it Random Forest, casca de classifier and textit Support Vector Machine (SVM) with linear and radial textit kernel. The experiments demonstrated that the SVM classifier with radial kernel using the HOG and LBP descriptors applying the PCA technique showed promising results, obtaining 90.31% accuracy
dc.format.extent66 f.
dc.identifier.citationSILVA, Ricardo Luna da. Classificação de banhistas na faixa segura de praia. 2018. 66 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) - Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2018.
dc.identifier.darkflstrmvhttps://n2t.net/ark:/57462/001300000fdqt
dc.identifier.urihttps://repository.ufrpe.br/handle/123456789/704
dc.language.isopor
dc.publisher.countryBrasil
dc.rightsopenAccess
dc.rights.licenseAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/br/deed.en_US
dc.subjectAlgoritmos computacionais
dc.subjectInteligência artificial
dc.subjectClassificação
dc.titleClassificação de banhistas na faixa segura de praia
dc.typebachelorThesis

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
tcc_Ricardo Luna da Silva.pdf
Tamanho:
3.9 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.87 KB
Formato:
Item-specific license agreed upon to submission
Descrição: