Semantic segmentation for people detection on beach images
dc.contributor.advisor | Macário Filho, Valmir | |
dc.contributor.advisorLattes | http://lattes.cnpq.br/4346898674852080 | pt_BR |
dc.contributor.author | Monte, Leonardo de Araujo | |
dc.contributor.authorLattes | http://lattes.cnpq.br/0547792731866043 | pt_BR |
dc.date.accessioned | 2024-02-08T21:41:05Z | |
dc.date.available | 2024-02-08T21:41:05Z | |
dc.date.issued | 2021-03-01 | |
dc.degree.departament | Departamento de Computação | pt_BR |
dc.degree.graduation | Bacharelado em Ciências da Computação | pt_BR |
dc.degree.grantor | Universidade Federal Rural de Pernambuco | pt_BR |
dc.degree.level | Graduacao | pt_BR |
dc.degree.local | Recife | pt_BR |
dc.description | As câmeras de monitoramento estão sendo cada vez mais aperfeiçoadas com o uso de sistemas de visão computacional capazes de identificar situações de risco. Este trabalho faz parte de um sistema de rastreamento automático de monitoramento de praias na região metropolitana do Recife, com o objetivo de evitar que banhistas ultrapassem os limites seguros na região de banho de praia. A segmentação semântica tem ganhado força em diferentes tarefas de visão computacional. Geralmente a metaarquitetura de uma rede de segmentação semântica consiste em dois módulos: codificador (backbone) e decodificador. Este trabalho realiza um estudo combinando um conjunto de redes de segmentação semântica, Unet, Xnet, LinkNet e Unet++ com os backbones prétreinados VGG16 e VGG19, com o objetivo de detectar banhistas em imagens de praia. Nós utilizamos a nossa própria base de dados, constituída de diferentes imagens da praia de Boa Viagem, RecifeBrasil. Os algoritmos foram avaliados com a métrica MIoU utilizando toda a cena da imagem, e apenas a faixa de mar. O melhor resultado de MIoU com relação à imagem completa foi 80.87%, e foi obtido pela XNet com o backbone da VGG19. O melhor MIoU na detecção de banhistas na faixa de mar obteve 85.56% e foi alcançado com a LinkNet com os backbones da VGG16 e VGG19. | pt_BR |
dc.description.abstract | Cameras monitoring are increasingly aided by computer vision systems that identify risk situations. This work is part of an automatic track system to monitor beaches in the metropolitan area of Recife in order to prevent bathers to trespass the boundaries of the safe region for swimming. Semantic segmentation has gained strength in several computer vision tasks. Usually, the metaarchitecture of a semantic segmentation network consists of two modules: encoder (backbone) and decoder. This work does a study combining a set of semantic segmentation networks, Unet, Xnet, LinkNet and Unet++ with the pretrained backbones VGG16 and VGG19, to detect swimmners in beach images. We have used our own dataset, made by several images taken at the Boa Viagem beach, RecifeBrazil. The algorithms are evaluated with MIoU metric regarding the entire image scene and just in the water area. The best MIoU regarding all image was 80.87best MIoU in detecting swimmers at the beach was 85.56obtained by the LinkNet algorithm with both VGG16 and VGG19 backbones. | pt_BR |
dc.format.extent | 26 f. | pt_BR |
dc.identifier.citation | MONTE, Leonardo de Araujo. Semantic segmentation for people detection on beach images. 2021. 26 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2021. | pt_BR |
dc.identifier.uri | https://repository.ufrpe.br/handle/123456789/5612 | |
dc.language.iso | en | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.relation.hasversion | MONTE, Leonardo de A.; OLIVEIRA, Emília G.; CORDEIRO, Filipe R.; MACARIO, Valmir. Semantic Segmentation for People Detection on Beach Images. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 18. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 691-702. ISSN 2763-9061. | pt_BR |
dc.relation.uri | https://doi.org/10.5753/eniac.2021.18295. | |
dc.rights | openAccess | pt_BR |
dc.rights.license | Atribuição-NãoComercial-SemDerivações 4.0 Internacional | pt_BR |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt-br | pt_BR |
dc.subject | Processamento de imagens | pt_BR |
dc.subject | Visão computacional | pt_BR |
dc.subject | Segmentação semântica (Computação) | pt_BR |
dc.title | Semantic segmentation for people detection on beach images | pt_BR |
dc.type | bachelorThesis | pt_BR |