Bacharelado em Ciência da Computação (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/6


Siglas das Coleções:

APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 6 de 6
  • Imagem de Miniatura
    Item
    Comparative Analysis of Data Augmentation Techniques in Hand Gesture Recognition
    (2025-03-18T03:00:00Z) Souza, Diego Rafael Ferreira de; Macario Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/0925751641833600
    Hand gesture recognition has gained significant attention due to its widespread applications in human-computer interaction, virtual reality, and assistive technologies. However, the scarcity of large, labeled datasets poses challenges such as overfitting and limited model generalization. To address this, we systematically evaluate 13 classical and six state-of-the-art (SOTA) data augmentation techniques for hand gesture recognition, conducting experiments on HGR1, OUHANDS, LIBRASUEFS, and EgoHands using the HGR-Net CNN architecture. Our results show that contrast-based augmentations (e.g., Solarize, Invert) improved accuracy by up to 21.16%, while mixing-based methods (e.g., MixUp, CutMix) often reduced performance, likely due to excessive distortion of gesture structures. Additionally, combining the best-performing augmentations was critical for maximizing accuracy across all datasets. However, these combinations did not always produce additive improvements, underscoring the importance of dataset-specific augmentation strategies for achieving optimal model performance.
  • Imagem de Miniatura
    Item
    Modelos de recomendação sensível ao contexto em ambientes de comunicação aumentativa alternativa: naive bayes, redes neurais e aprendizagem federada
    (2025-03-19T03:00:00Z) Nascimento, Fabio Augusto Souza do; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/2170186670973508
    A inteligência artificial (IA) está presente em diversos setores da sociedade, promovendo constantes avanços tecnológicos e sociais. Um dos subconjuntos da IA é a aprendizagem de máquina (AM), que possibilita aos computadores aprenderem e evoluírem com base em dados. O conhecimento obtido por meio desse processo auxilia em diferentes áreas, desde a análise e interpretação de informações até a usabilidade de aplicativos. Compreender o funcionamento e as possibilidades dessa ferramenta pode ser um ativo valioso. Entre as múltiplas aplicações possíveis, a AM desempenha um papel importante na comunicação aumentativa e alternativa (CAA), auxiliando indivíduos que apresentam dificuldades nessas interações por meio de aplicativos. Essas aplicações estão em constante evolução e, com as inovações tecnológicas, possibilitam o desenvolvimento de sistemas capazes de compreender o ambiente em que uma pessoa está inserida e oferecer recomendações personalizadas aos usuários. Este trabalho investiga o uso dos Sistemas de Recomendação Sensível ao Contexto (SRSC) em aplicações da CAA, considerando as características individuais dos usuários com base em seus dados e contexto. São utilizados modelos de IA, tais como Naïve Bayes (NB), Redes Neurais Artificiais (RNA) e Aprendizagem Federada (AF), para comparar diferentes abordagens e avaliar sua capacidade de fornecer resultados relevantes. A partir dos experimentos realizados, foi possível verificar que modelos personalizados demonstram melhor desempenho em relação a abordagens globais, oferecendo recomendações mais relevantes aos usuários finais. Nesse sentido, a personalização e o uso de variáveis contextuais podem melhorar significativamente a experiência de pessoas que dependem de CAA, aumentando a agilidade e a assertividade da comunicação.
  • Imagem de Miniatura
    Item
    Comparison of recommendation algorithms for user groups: a food-based case study
    (2023-04-24) Vasconcelos, Caio Giovanni Pereira; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/4775036700843482
    There is a rise in the development of platforms that work with the distribution of buying and selling food, and with the increase in food options and the number of users, such platforms use recommendation systems to facilitate the user’s choice. These recommendations are usually based on information that the algorithm obtains previously. And increasingly, these recommendations need to be right in specific contexts. This article proposes to compare, through common metrics in the literature, the use of two recommendation algorithms in a context of user groups to make a joint recommendation. One of the algorithms uses a database of groups in neural network training, and the other algorithm uses databases of auxiliary domains with different contexts to perform the prediction. The results indicate that it is possible to perform the prediction for groups of users even if a database with scarce data is used. The article is a theoretical basis to show the efficiency of recommending it to groups in the food domain, and can be incorporated and added to existing platforms.
  • Imagem de Miniatura
    Item
    Uma metodologia para a avaliação de desempenho e custos do treinamento de redes neurais em ambientes de nuvem
    (2024-03-07) Moura Filho, Cláudio Márcio de Araújo; Sousa, Érica Teixeira Gomes de; http://lattes.cnpq.br/9899077867723655; http://lattes.cnpq.br/8143173691280119
    Redes neurais profundas são soluções para problemas que envolvem reconhecimento de padrões e diversos trabalhos tentam encontrar maneiras de otimizar o desempenho dessas redes. Essa otimização necessita de hardware adequado para ser implementada, hardware esse que pode ser muito custoso para pequenas e médias organizações. O objetivo deste trabalho é propor uma metodologia para avaliar o desempenho e custo do treinamento de redes neurais, considerando os fatores mais impactantes no tempo de treinamento e avaliar o custo financeiro total do ambiente para essa tarefa. Nesse sentido, observou-se que fatores como o tamanho da imagem de entrada e a arquitetura da rede tem grande impacto na métrica de tempo de treinamento e por consequência no custo total.
  • Imagem de Miniatura
    Item
    Rastreamento de pedestres 3D multi-câmera usando redes neurais de grafos
    (2022-05-27) Andrade, Isabella Stefanny Fernandes de; Lima, João Paulo Silva do Monte; http://lattes.cnpq.br/1916245590298485; http://lattes.cnpq.br/5529506615862118
    Rastrear a posição de pedestres ao longo do tempo através de imagens de câmeras é um tópico de pesquisa em visão computacional em ascensão. No cenário multi-câmera, as pesquisas são mais recentes ainda. Muitas soluções utilizam redes neurais supervisionadas para resolver esse problema, o que pode exigir um esforço muito grande para anotar os dados além de muito tempo gasto para treinar a rede. Os objetivos deste trabalho são: desenvolver variações de algoritmos de rastreamento de pedestres sendo desejável dispensar a necessidade de possuir dados anotados; e comparar os resultados obtidos através de métricas de acurácia. Este trabalho propõe, portanto, uma abordagem para rastrear pedestres no espaço 3D em ambientes multi-câmera utilizando a arquitetura de rede neural Message Passing Neural Network inspirada em grafos. Avaliamos a solução utilizando a base de dados WILDTRACK e um método de detecção generalizável, conseguindo 77,1% de MOTA ao treinar com dados obtidos de um algoritmo de rastreamento generalizável. O algoritmo consegue realizar o rastreamento a uma taxa de 40 quadros por segundo.
  • Imagem de Miniatura
    Item
    Estudo de viabilidade de sistemas de detecção de armamentos em tempo real em linhas de ônibus urbanos
    (2021-12-09) Lima Junior, Cícero Pereira de; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/9901763283774954
    Sistemas de monitoramento são parte fundamental na prevenção de assaltos a mão armada dentro dos ônibus. Entretanto, a utilização desses sistemas demanda quantidade irreal de pessoas para que seja operado em tempo real. O uso de técnicas de visão computacional e aprendizagem profunda surgem como forma de automatizar partes ou até todo o processo de monitoramento, desde a detecção dos armamentos ao disparo de alarmes. Para que este processo seja realizado de maneira eficiente, permitindo ações efetivas por parte das autoridades, é preciso que o sistema seja capaz de atender em tempo real uma demanda crescente de câmeras de segurança. Desta forma, este trabalho teve como objetivo analisar a viabilidade de um sistema de detecção de armamentos em uma rede de ônibus. Através de simulação, avaliou-se o desempenho do algoritmo YOLO, em sua quarta versão, em um modelo cliente-servidor sob uma demanda crescente de câmeras de segurança. O servidor dispunha de uma GPU Tesla V80 com 12GB de memória, processador Intel Xeon dual core, 61GB de memória RAM e 200GB de espaço em disco. Por fim, a partir dos resultados obtidos, observou-se que a aplicação apresenta aumento no tempo de detecção após introduzir 16 usuários virtuais (câmeras) e seu tempo médio não pode ser considerado como tempo real, dentro do contexto de segurança de ônibus.