TCC - Bacharelado em Sistemas da Informação (Sede)
URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/427
Navegar
11 resultados
Resultados da Pesquisa
Item Desenvolvimento de aplicação em Outsystems para área de saúde utilizando práticas do HIPAA compliance(2025-03-26) Carvalho, Udney Epaminondas; Bocanegra, Silvana; Marques, Paulo César Florentino; http://lattes.cnpq.br/1264573844331881; http://lattes.cnpq.br/4596111202208863; http://lattes.cnpq.br/3835096844800301A iminente necessidade das empresas de adotarem o processo de transformação digital induziu muitas a buscarem recursos que possam fornecer entregas ágeis e robustas para a digitalização dos seus processos. Esta transformação digital também atinge o setor de saúde, que atrelado aos desafios inerentes a própria natureza destas mudanças, também precisa lidar com cautela ao tratar das informações sensíveis dos pacientes e o compartilhamento destes dados. Para atender a demandas como estas, onde é necessário agilidade e segurança para a elaboração de projetos, tem se popularizado o uso de plataformas low-code, que por usar os benefícios da computação em nuvem e a possibilidade de criar código utilizando recursos visuais, vai facilitar o aprendizado técnico e permitir a criação de aplicações robustas em um tempo reduzido. O presente trabalho tem como objetivo apresentar o uso de uma plataforma low-code (OutSystems) no desenvolvimento de uma aplicação web para gerenciamento e realização de consultas médicas. Como estudo de caso, será utilizado um produto da start up ZophIA.tech, que faz uso de inteligência artificial aprimorada por análise geométrica para auxiliar no diagnóstico de esquizofrenia e outras doenças mentais através da fala e gestos de pacientes. Serão implementadas as regras de segurança de dados do padrão americano HIPAA para tratar com informações sensíveis dos pacientes.Item Detecção de fake news: uma abordagem baseada em Large Language Models e Prompt Engineering(2025-03-20) Fonseca, Pablo Weslley Silva da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/6258598537884813Este trabalho aborda o uso de Large Language Models (LLMs) para a detecção de fake news ou notícias falsas no idioma inglês e português. As notícias falsas têm gerado impactos negativos, como desinformação e conflitos sociais, sendo amplamente disseminadas pelas redes sociais. Embora métodos tradicionais de verificação sejam eficazes, como checagem manual e agências de verificação de fatos, a aplicação de algoritmos de machine learning e deep learning trouxe avanços importantes. No entanto, esses modelos apresentam limitações, como perda de contexto semântico e custos de treinamento. A introdução da arquitetura Transformers possibilitou avanços significativos com LLMs, como BERT, GPT e T5, devido à sua capacidade de compreender padrões linguísticos complexos. Este trabalho propõe uma abordagem de detecção de notícias falsas a partir recuperações de informações pela Web e o modelo Qwen2.5-7B-Instruct, comparando o desempenho com propostas que combina recuperação de informações com modelos tradicionais e LLMs. Os resultados destacam vantagens e desvantagens, contribuindo para futuras melhorias em sistemas automatizados de detecção de notícias falsas.Item Geração aumentada para recuperação de dados urbanos integrados: consolidando dados do IBGE, Censo, CNEFE e OSM para a otimização do planejamento urbano(2025-03-21) Conceição, Keyson Raphael Acioli da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/3198610477751043Nos últimos anos, os campos da Inteligência Artificial (IA) e do aprendizado de máquina (AM) revolucionaram o domínio do planejamento urbano, pois permitem que volumes substanciais de dados sejam analisados de forma eficaz, incentivando melhor alocação de recursos e entregas de serviços públicos. Para atingir este objetivo, o agente inteligente proposto neste trabalho reúne dados de várias fontes, incluindo Censo Demográfico, Cadastro Nacional de Endereços para Fins Estatísticos - CNEFE, e OpenStreetMap (OSM) para oferecer respostas baseadas em contexto relacionadas à distribuição da população e acesso a diferentes serviços urbanos. A abordagem proposta inclui um pipeline de processamento que implementa normalização, indexação vetorial das informações e representação semântica para tornar as consultas mais eficazes. Para avaliar o sistema proposto, foi conduzido um experimento com especialistas em planejamento urbano e analisamos a relevância, clareza e utilidade das respostas geradas pelo sistema. Tais resultados mostram que o agente é capaz de detectar áreas com pouca cobertura de serviços necessários, indicando uma alocação adequada. No entanto, outros desafios, tais como a necessidade de melhor clarificação das respostas e ampliação da cobertura espacial, foram reconhecidos como oportunidades para trabalho futuro.Item Implementação de um agente inteligente para atendimento automatizado de dúvidas acadêmicas na UFRPE(2025-03-31) Silva, Evelyn Mylena Bezerra e; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584; http://lattes.cnpq.br/5200293461568988Este trabalho teve como objetivo principal desenvolver e validar um agente inteligente baseado em técnicas de Processamento de Linguagem Natural (PLN) e Recuperação de Informação, voltado ao suporte acadêmico no curso de Bacharelado em Sistemas de Informação (BSI) da Universidade Federal Rural de Pernambuco (UFRPE). O sistema foi projetado para oferecer respostas rápidas, relevantes e contextualizadas a perguntas frequentes relacionadas à vida acadêmica dos estudantes, como carga horária, disciplinas, matrículas e procedimentos administrativos. A implementação envolveu a coleta e estruturação de documentos institucionais, a construção de um modelo vetorial para recuperação semântica de respostas e a integração com um módulo de memória conversacional. Para a validação, as respostas do agente inteligente foram comparadas com um FAQ do curso de BSI, utilizando como métrica a similaridade do cosseno, aplicada ao conteúdo semântico das respostas. Os resultados indicaram uma média de similaridade de aproximadamente 0,6396, com mediana de 0,6548 e baixa dispersão. A maioria das respostas apresentou alto ou médio grau de alinhamento semântico com o conteúdo oficial, sendo classificadas como semanticamente adequadas. Casos de baixa similaridade representaram uma minoria e estiveram, em geral, relacionados a perguntas de cunho prático-operacional não abordadas na base de dados do sistema. Em contrapartida, observou-se que, em alguns contextos, o agente inteligente forneceu respostas mais completas e fundamentadas do que aquelas presentes no próprio FAQ. Conclui-se que o sistema desenvolvido apresenta desempenho satisfatório e demonstra potencial para expansão como ferramenta institucional de apoio ao estudante, promovendo maior autonomia, agilidade e acessibilidade no acesso a informação acadêmica.Item Desenvolvimento de um sistema auxiliar para controle de acesso de veículos para a Universidade Federal Rural de Pernambuco(2024-03-08) Izidio, Stefany Vitória da Conceição; Garrozi, Cícero; http://lattes.cnpq.br/0488054917286587; http://lattes.cnpq.br/0642557485551355Atualmente, o controle de acesso de veículos à Universidade Federal Rural de Pernambuco é feito manualmente em papéis por funcionários da universidade. Também há a liberação direta de veículos que se cadastram na universidade e recebem um adesivo específico para usar no para-brisa. Este tipo de controle não é muito seguro, por poder ser facilmente clonado e usado por veículos sem autorização real. Além disso, há um curto desvio de atenção do funcionário quando ele realiza o trabalho manual de anotar a placa no papel. Este trabalho tem o objetivo de tornar o processo de controle de veículos mais confiável e seguro através do desenvolvimento de um protótipo de um sistema que auxilia no controle de acesso. Este trabalho propõe uma solução mediante a captura de uma imagem da placa, identificação da placa do veículo e da verificação em uma base de dados se a placa é previamente cadastrada ou não. E, o sistema produz um sinal luminoso para indicar ao funcionário se a placa é ou não cadastrada. Para isso, foi montado um produto de hardware e desenvolvido um software embutido. O hardware é composto por um conjunto de dispositivos eletrônicos como LEDs, câmera, dispositivo de processamento, etc. O software é um conjunto de bibliotecas que foi, em sua maior parte, desenvolvido em Python. Para o software embutido, foi usado um conjunto de imagens com fotos de placas de carros brasileiros para treinar um modelo de detecção de objetos para detectar as placas. Por fim, foi utilizado um serviço de reconhecimento ótico de caracteres para extrair o conteúdo da placa, possibilitando assim registrar e emitir o sinal luminoso ao usuário.Item Técnicas de comitês para a estimação de esforço na correção de software(2019-12-10) Guimarães, Ariana Lima; Soares, Rodrigo Gabriel Ferreira; http://lattes.cnpq.br/2526739219416964; http://lattes.cnpq.br/2605671850587343O planejamento bem definido de um projeto de software, desde os estágios iniciais, é imprescindível para o sucesso do desenvolvimento, seja ele referente à criação ou à manutenção do produto. Em anuência ao ciclo de vida de software, a manutenção é realizada de forma contínua após o produto ter sido construído e entregue, em paralelo à execução de testes por engenheiros e/ou usuários. Nessa etapa, surgem primariamente os documentos de Histórias de Usuário e Relatórios de Problemas, que descrevem, em linguagem natural, especificações de negócio, cenários de erros encontrados, correções esperadas e melhorias para o sistema. Esses documentos visam, dentre outras coisas, o mapeamento das atividades a serem realizadas durante o projeto. Por conseguinte, em consonância com os recursos disponíveis – humanos, financeiros e temporais -, torna-se possível estimar o esforço necessário no desenvolvimento das atividades e gerar informações essenciais a um planejamento eficaz e eficiente. Como esses documentos são escritos em textos naturais, surge a oportunidade de utilizar o Processamento de Linguagem Natural e o Aprendizado de Máquina (AM) para predição automatizada do esforço de software. Na prática, no dia-a-dia das fábricas de software, é comum a utilização da opinião de especialistas e da equipe do projeto para julgar o esforço requisitado por uma atividade durante sessões de Planning Poker. Nessa técnica, normalmente o esforço é medido em Pontos de História que seguem a sequência Fibonacci. Porém, esse modo de planejamento requer o escalonamento de muitos recursos para sua execução. A aplicação do AM acarreta em um sistema, após a fase de treinamento, capaz de apreender a experiência da equipe e replicá-la de forma rápida e automática para estimar o esforço das atividades. Dessa forma, este trabalho atinge a área de AM, propondo uma abordagem de Comitê de PVDM na extração de características de Relatórios de Problemas para estimar Pontos de História, os indicadores de esforço. Comparada a outras duas abordagens de BoW e PV-DM tradicional, a técnica proposta apresentou bons resultados, com f-measure de cerca de 80% em um classificador de SVM com aprendizado supervisionado. Os resultados dos experimentos inspiram um ponto de partida no aprofundamento do estudo da abordagem de Comitê de PV-DM e no seu aprimoramento.Item Uma abordagem baseada em aprendizado de máquina para dimensionamento de requisitos de software(2016-12-13) Fernandes Neto, Eça da Rocha; Soares, Rodrigo Gabriel Ferreira; http://lattes.cnpq.br/2526739219416964; http://lattes.cnpq.br/6325583065151828Este trabalho se propõe a realizar o dimensionamento automático de requisitos de software utilizando uma abordagem de aprendizado de máquina. A base de dados utilizada é real e foi obtida de uma empresa que trabalha com processo de desenvol- vimento baseado no Scrum e estimativa Planning Poker. Durante os estudos foram utilizadas técnicas de pré processamento de dados, classificação e seleção de melho- res atributos com os algorítimos termo–inverso da frequência nos documentos (tf-idf) e análise de componentes principais (PCA). O aprendizado de máquina e classificação automática se deu com o uso de Máquinas de Vetores de Suporte (SVM) baseado no histórico de dados disponível. Os testes finais foram realizados com e sem a seleção de atributos via PCA. Está demonstrado que a assertividade é maior quando é feita a seleção dos melhores atributos. A ferramenta fruto do trabalho consegue estimar o tamanho de histórias de usuário com uma generalização de até 91%. Os resultados foram considerados passíveis de serem utilizados em ambiente de produção sem pre- juízo para a equipe de desenvolvimento.Item Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade(2023-08-18) Assis, André Carlos Santos de; Andrade, Ermeson Carneiro de; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/3963132175829207A explicabilidade é essencial para que os usuários entendam, confiem e gerenciem com eficiência sistemas computacionais que utilizam inteligência artificial. Desta forma, assim como a assertividade, entender como se deu o processo decisório dos modelos é fundamental. Embora existam trabalhos que se concentrem na explicabilidade de algoritmos de inteligência artificial, é importante destacar que, até onde sabemos, nenhum deles analisou os trade-offs entre desempenho e explicabilidade de forma abrangente. Nesse sentido, esta pesquisa tem como objetivo preencher essa lacuna, investigando tanto algoritmos transparentes, como Arvore de Decisão e Regressão Logística, quanto algoritmos opacos, como Floresta Aleatória e Máquina de Vetores de Suporte, a fim de avaliar os trade-offs entre desempenho e explicabilidade. Os resultados revelam que os algoritmos opacos apresentam uma baixa explicabilidade e não têm uma boa performance quanto ao tempo de resposta devido á sua complexidade, contudo são mais assertivos. Em contra partida, os algoritmos transparentes possuem uma explicabilidade mais efetiva e uma melhor performance quanto ao tempo de resposta, porém, em nossos experimentos, observamos que a acurácia obtida foi menor do que a acurácia dos modelos opacos.Item Programinó: um jogo para auxílio ao aprendizado do assunto de tipos de dados na programação(2019-12-13) Nascimento, Gabriele Pessoa do; Falcão, Taciana Pontual da Rocha; Sampaio, Pablo Azevedo; http://lattes.cnpq.br/8865836949700771; http://lattes.cnpq.br/5706959249737319; http://lattes.cnpq.br/9978319013197863A era digital em que vivemos faz com que nós estejamos sempre imersos em tecnologias cada vez mais ubíquas. Para que este contato com a tecnologia permaneça de forma saudável, é preciso aprender a consumi-la de forma consciente, e além disso, aprender a desenvolvê-la em diferentes contextos; pois, desta forma, teremos soluções cada vez mais inclusivas. Sobre desenvolvimento de soluções, por mais que tenhamos diversos artefatos facilitadores, o processo de ensino-aprendizagem de programação ainda é um desafio, principalmente para estudantes iniciantes. Lidar com tantos estímulos, concorrentes e constantes e ainda ter a capacidade de abstrair e assimilar conceitos de programação que não é trivial e nem é trabalhado desde a infância, por isso, artefatos lúdicos, como os jogos digitais, são essenciais para facilitar os primeiros contatos com a programação. Neste contexto, este trabalho traz para a sociedade um jogo educacional digital que trabalha o assunto de tipos de dados na programação, o Programinó, para que estudantes iniciantes possam praticar e consolidar o conteúdo através de uma ferramenta lúdica. O jogo foi desenvolvido com três níveis de dificuldade, um fácil, um médio e um difícil. O difícil aplica o algoritmo minimax adaptado, enquanto o fácil usa o mesmo minimax adaptado de maneira invertida. Já o nível médio utiliza um algoritmo aleatório. Como forma de validar os níveis de dificuldades, foram realizados experimentos comparativos que comprovaram que o minimax perdeu em apenas 5,6% das vezes; ganhando em 49,7% ou empatando nas demais partidas.Item Comparação de algoritmos de reconhecimento de gestos aplicados à sinais estáticos de Libras(2019-07-12) Cruz, Lisandra Sousa da; Cordeiro, Filipe Rolim; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/4807739914511076; http://lattes.cnpq.br/2111589326272463A Língua Brasileira de Sinais (Libras) foi criada a fim de suprir uma necessidade de comunicação não-verbal para os surdos, que durante muito tempo foram doutrinados à ter o português como sua primeira língua. Atualmente, a Libras é a segunda língua oficial do Brasil e primeira língua dos surdos, assim como o português é para o ouvinte. Entretanto, mesmo com tamanho reconhecimento, a segunda língua oficial do Brasil não é conhecida pela maior parte da população brasileira. O processo de inclusão visa proporcionar igualdade aos deficientes, de forma que a deficiência não seja um fator impeditivo à convivência em sociedade. Com o advento da tecnologia e avanços da Inteligência Artificial (IA), foram criados artifícios tecnológicos visando propiciar inclusão. Na IA, o reconhecimento de padrões é um dos subtemas mais abordados na atualidade, sendo bastante aplicada para a classificação de gestos de diversas línguas de sinais na literatura. Essa pesquisa tem como principal tarefa identificar as mãos que formam um determinado sinal de Libras e em seguida reconhecer a que classe pertence, classificando-o. Baseado na classificação da Língua de Sinais Americana, a Feature Fusion-based Convolutional Neural Network (FFCNN), uma rede estendida da Convolutional Neural Network (CNN), obteve a melhor acurácia em comparação a outras redes, dentre elas a Visual Geometry Group (VGG). Diante desse cenário, esse trabalho aplica a FFCNN à gestos estáticos de Libras a fim de verificar se a FFCNN obtém a melhor acurácia assim como obteve na Língua de Sinais Americana. Para alcançar esse objetivo são comparados três classificadores: VGG com uma variação da CNN com 13 e 16 camadas; FFCNN e uma rede Multi Layer Perceptron (MLP) usada no reconhecimento de gestos estáticos de Libras na literatura. Os algoritmos foram aplicados em um dataset de Libras que contém 9.600 imagens de 40 sinais. Os resultados demonstram que a rede VGG com 16 camadas obteve a maior acurácia dentre modelos descritos neste trabalho, com valor de 99,45%.
