TCC - Bacharelado em Sistemas da Informação (Sede)
URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/427
Navegar
7 resultados
Resultados da Pesquisa
Item Desenvolvimento de aplicação em Outsystems para área de saúde utilizando práticas do HIPAA compliance(2025-03-26) Carvalho, Udney Epaminondas; Bocanegra, Silvana; Marques, Paulo César Florentino; http://lattes.cnpq.br/1264573844331881; http://lattes.cnpq.br/4596111202208863; http://lattes.cnpq.br/3835096844800301A iminente necessidade das empresas de adotarem o processo de transformação digital induziu muitas a buscarem recursos que possam fornecer entregas ágeis e robustas para a digitalização dos seus processos. Esta transformação digital também atinge o setor de saúde, que atrelado aos desafios inerentes a própria natureza destas mudanças, também precisa lidar com cautela ao tratar das informações sensíveis dos pacientes e o compartilhamento destes dados. Para atender a demandas como estas, onde é necessário agilidade e segurança para a elaboração de projetos, tem se popularizado o uso de plataformas low-code, que por usar os benefícios da computação em nuvem e a possibilidade de criar código utilizando recursos visuais, vai facilitar o aprendizado técnico e permitir a criação de aplicações robustas em um tempo reduzido. O presente trabalho tem como objetivo apresentar o uso de uma plataforma low-code (OutSystems) no desenvolvimento de uma aplicação web para gerenciamento e realização de consultas médicas. Como estudo de caso, será utilizado um produto da start up ZophIA.tech, que faz uso de inteligência artificial aprimorada por análise geométrica para auxiliar no diagnóstico de esquizofrenia e outras doenças mentais através da fala e gestos de pacientes. Serão implementadas as regras de segurança de dados do padrão americano HIPAA para tratar com informações sensíveis dos pacientes.Item Detecção de fake news: uma abordagem baseada em Large Language Models e Prompt Engineering(2025-03-20) Fonseca, Pablo Weslley Silva da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/6258598537884813Este trabalho aborda o uso de Large Language Models (LLMs) para a detecção de fake news ou notícias falsas no idioma inglês e português. As notícias falsas têm gerado impactos negativos, como desinformação e conflitos sociais, sendo amplamente disseminadas pelas redes sociais. Embora métodos tradicionais de verificação sejam eficazes, como checagem manual e agências de verificação de fatos, a aplicação de algoritmos de machine learning e deep learning trouxe avanços importantes. No entanto, esses modelos apresentam limitações, como perda de contexto semântico e custos de treinamento. A introdução da arquitetura Transformers possibilitou avanços significativos com LLMs, como BERT, GPT e T5, devido à sua capacidade de compreender padrões linguísticos complexos. Este trabalho propõe uma abordagem de detecção de notícias falsas a partir recuperações de informações pela Web e o modelo Qwen2.5-7B-Instruct, comparando o desempenho com propostas que combina recuperação de informações com modelos tradicionais e LLMs. Os resultados destacam vantagens e desvantagens, contribuindo para futuras melhorias em sistemas automatizados de detecção de notícias falsas.Item Geração aumentada para recuperação de dados urbanos integrados: consolidando dados do IBGE, Censo, CNEFE e OSM para a otimização do planejamento urbano(2025-03-21) Conceição, Keyson Raphael Acioli da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/3198610477751043Nos últimos anos, os campos da Inteligência Artificial (IA) e do aprendizado de máquina (AM) revolucionaram o domínio do planejamento urbano, pois permitem que volumes substanciais de dados sejam analisados de forma eficaz, incentivando melhor alocação de recursos e entregas de serviços públicos. Para atingir este objetivo, o agente inteligente proposto neste trabalho reúne dados de várias fontes, incluindo Censo Demográfico, Cadastro Nacional de Endereços para Fins Estatísticos - CNEFE, e OpenStreetMap (OSM) para oferecer respostas baseadas em contexto relacionadas à distribuição da população e acesso a diferentes serviços urbanos. A abordagem proposta inclui um pipeline de processamento que implementa normalização, indexação vetorial das informações e representação semântica para tornar as consultas mais eficazes. Para avaliar o sistema proposto, foi conduzido um experimento com especialistas em planejamento urbano e analisamos a relevância, clareza e utilidade das respostas geradas pelo sistema. Tais resultados mostram que o agente é capaz de detectar áreas com pouca cobertura de serviços necessários, indicando uma alocação adequada. No entanto, outros desafios, tais como a necessidade de melhor clarificação das respostas e ampliação da cobertura espacial, foram reconhecidos como oportunidades para trabalho futuro.Item Implementação de um agente inteligente para atendimento automatizado de dúvidas acadêmicas na UFRPE(2025-03-31) Silva, Evelyn Mylena Bezerra e; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584; http://lattes.cnpq.br/5200293461568988Este trabalho teve como objetivo principal desenvolver e validar um agente inteligente baseado em técnicas de Processamento de Linguagem Natural (PLN) e Recuperação de Informação, voltado ao suporte acadêmico no curso de Bacharelado em Sistemas de Informação (BSI) da Universidade Federal Rural de Pernambuco (UFRPE). O sistema foi projetado para oferecer respostas rápidas, relevantes e contextualizadas a perguntas frequentes relacionadas à vida acadêmica dos estudantes, como carga horária, disciplinas, matrículas e procedimentos administrativos. A implementação envolveu a coleta e estruturação de documentos institucionais, a construção de um modelo vetorial para recuperação semântica de respostas e a integração com um módulo de memória conversacional. Para a validação, as respostas do agente inteligente foram comparadas com um FAQ do curso de BSI, utilizando como métrica a similaridade do cosseno, aplicada ao conteúdo semântico das respostas. Os resultados indicaram uma média de similaridade de aproximadamente 0,6396, com mediana de 0,6548 e baixa dispersão. A maioria das respostas apresentou alto ou médio grau de alinhamento semântico com o conteúdo oficial, sendo classificadas como semanticamente adequadas. Casos de baixa similaridade representaram uma minoria e estiveram, em geral, relacionados a perguntas de cunho prático-operacional não abordadas na base de dados do sistema. Em contrapartida, observou-se que, em alguns contextos, o agente inteligente forneceu respostas mais completas e fundamentadas do que aquelas presentes no próprio FAQ. Conclui-se que o sistema desenvolvido apresenta desempenho satisfatório e demonstra potencial para expansão como ferramenta institucional de apoio ao estudante, promovendo maior autonomia, agilidade e acessibilidade no acesso a informação acadêmica.Item Desenvolvimento de um sistema auxiliar para controle de acesso de veículos para a Universidade Federal Rural de Pernambuco(2024-03-08) Izidio, Stefany Vitória da Conceição; Garrozi, Cícero; http://lattes.cnpq.br/0488054917286587; http://lattes.cnpq.br/0642557485551355Currently, vehicle access control to the Federal Rural University of Pernambuco is done manually on paper by university employees. There is also direct release for vehicles that register with the university and receive a specific sticker to use on the windshield. This type of control is not very safe, as it can be easily cloned and used by vehicles without real authorization. Furthermore, there is a short diversion of the employee's attention when he performs the manual work of writing down the sign on paper. This work aims to make the vehicle control process more reliable and safe through the development of a prototype of a system that assists in access control. This work proposes a solution by capturing an image of the license plate, identifying the vehicle plate and checking in a database whether the plate is previously registered or not. And, the system produces a light signal to indicate to the employee whether the license plate is registered or not. To achieve this, a hardware product was assembled and embedded software was developed. The hardware consists of a set of electronic devices such as LEDs, camera, processing device, etc. The software is a set of libraries that were, for the most part, developed in Python. For the embedded software, a set of images with photos of Brazilian car license plates was used to train an object detection model to detect the license plates. Finally, an optical character recognition service was used to extract the content of the plate, thus making it possible to register and emit the light signal to the user.Item Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade(2023-08-18) Assis, André Carlos Santos de; Andrade, Ermeson Carneiro de; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/3963132175829207Explainability is essential for users to efficiently understand, trust, and manage computer systems that use artificial intelligence. Thus, as well as assertiveness, understanding how the decision-making process of the models occurred is fundamental. While there are studies that focus on the explainability of artificial intelligence algorithms, it is important to highlight that, as far as we know, none of them have comprehensively analyzed the trade-offs between performance and explainability. In this sense, this research aims to fill this gap by investigating both transparent algorithms, such as Decision Tree and Logistic Regression, and opaque algorithms, such as Random Forest and Support Vector Machine, in order to evaluate the trade-offs between performance and explainability. The results reveal that opaque algorithms have a low explanability and do not perform well regarding response time due to their complexity, but are more assertive. On the other hand, transparent algorithms have a more effective explainability and better performance regarding response time, but in our experiments, we observed that accuracy obtained was lower than the accuracy of opaque models.Item Uma proposta para agrupamento automático de horas de trabalho(2022-06-03) Félix, Matheus Rodrigues de Souza; Monteiro, Cleviton Vinicius Fonsêca; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/9362573782715504; http://lattes.cnpq.br/6209976572558281The recording of hours used in projects is a recurring task in the day-to-day of most professionals. This task is crucial in processes related to administration and human resources for analysis of alignment with schedules and productivity. However, filling in correctly and on time are important points for the cycle of activities and registration to be effective. When the professional works on several projects in an alternating way in his daily life, the record of these activities tends to gain inaccuracy. In this article, a proposal will be presented to enable the automation of time recording through the use of text mining techniques. The objective of this project is to create a facilitator that helps the user by minimizing the daily hours creating records of work performed and increasing the accuracy of the records.