TCC - Bacharelado em Ciência da Computação (Sede)
URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/415
Navegar
1 resultados
Resultados da Pesquisa
Item Prevendo a evasão escolar em uma instituição de ensino técnico utilizando mineração de dados educacionais(2021-07-16) Lemos, Ítalo Vinícius do Rego; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/9146227756985212Dropping out of school is one of the main problems that occur in education and has become a very frequent reality within public or private educational institutions, resulting in immeasurable consequences both in the life of the student who fails to attend school and for society as a whole. Because it is a phenomenon that worries education professionals a lot, if it is necessary to reverse it, so these professionals need resources that are efficient in demonstrating knowledge inside and outside the teaching environment and outlining strategies to deal with such a scenario. Being able to predict a possible dropout benefits both the student and institutions. Based on this, a methodology that has proven to be skillful in combating school dropouts and capable of providing knowledge to the educational institution is Educational Data Mining. Based on this, this work aimed to apply Data Mining and Machine Learning techniques to predict possible dropout cases before the student enters the educational institution. Through social and economic indicators of the student and his family, he is classified as a potential evader or not. This study adopted a real database from a Brazilian public education institution, with data from candidates who competed in its admission process (entrance exam) for a place in technical education. During the research, 3 classification models were used Decision Tree, Random Forest e XGBoost with the XGBoost algorithm achieving a 74% hit rate in predicting evaders, being superior to the others but still presenting a high number of students classified as not dropouts but who actually dropped out. Given these results, we conclude that more indicators are needed to satisfactorily detect the possible candidate who will drop out.