TCC - Bacharelado em Ciência da Computação (Sede)

URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/415

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    Análise da evasão no ensino superior: predição e prevenção por meio da mineração de dados educacionais
    (2024-03-05) Ferreira, Rodolfo André Barbosa; Mello, Rafael Ferreira Leite de; http://lattes.cnpq.br/6190254569597745; http://lattes.cnpq.br/2982020271806247
    Considering that dropout occurs due to abandonment, transfer, or withdrawal from the course; when the student disengages from the institution they are enrolled in or when the student definitively abandons or does not complete higher education, this article seeks to identify methods and automated techniques to assist managers in preventing dropout cases through predictions. To conduct the study, Educational Data Mining (EDM) was used, which applies data mining techniques such as database, statistics, and machine learning in education. Data from 5144 students with characteristics related to course, semester, and demographics were used from the database provided by the Academic Information and Management System (SIGA) of the Federal Rural University of Pernambuco (UFRPE) for the courses of Animal Science, Fisheries Engineering, and Agronomy. The data, except for those containing personal, restricted, and sensitive information, were separated into Academic Characteristics per Semester, General Academic Characteristics, Course-related, Demographic, and Target Characteristics. The study employs the LSTM machine learning algorithm and the SGD and Adam optimizers, exploring different values for the parameters of learning rate, momentum, batch size, and number of epochs.