TCC - Bacharelado em Ciência da Computação (Sede)

URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/415

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    Análise da evasão no ensino superior: predição e prevenção por meio da mineração de dados educacionais
    (2024-03-05) Ferreira, Rodolfo André Barbosa; Mello, Rafael Ferreira Leite de; http://lattes.cnpq.br/6190254569597745; http://lattes.cnpq.br/2982020271806247
    Tendo em vista que a evasão ocorre por abandono, transferência ou desistência do curso; quando o aluno se desliga da instituição que está matriculado ou quando o aluno abandona definitivamente ou não o curso superior, este artigo busca identificar métodos e técnicas automáticas para auxiliar os gestores a prevenir casos de evasão por meio das predições. Para realizar o estudo foi utilizada a Mineração de Dados Educacionais (MDE), que aplica técnicas de mineração de dados, tais como banco de dados, estatísticas e aprendizado de máquina nas áreas da educação. Foram empre- gues dados de 5144 alunos com características relacionadas ao curso, semestre e demografia constantes no banco de dados fornecido pelo Sistema de Informações e Gestão Acadêmica (SIGA) da Universidade Federal Rural de Pernambuco (UFRPE) para os cursos de Zootecnia, Engenharia de Pesca e Agronomia. Os dados, exceto aqueles que são informações pessoais, restritas e sensíveis, foram separados em Ca- racterísticas Acadêmicas por Semestre, Acadêmicas Gerais, dos Cursos, Demográficas e Característica alvo. O estudo usa o algoritmo de aprendizado de máquina LSTM e os otimizadores SGD e Adam, explorando diferentes valores para os parâmetros de taxa de aprendizagem, momentum, tamanho de lotes e número de épocas.