Detecção e modelagem de ameaças persistentes avançadas na fase de movimentação lateral: uma abordagem com process mining

Imagem de Miniatura

Data

2025-03-20

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

A crescente ameaça de ataques cibernéticos complexos tem exigido estratégias avançadas de defesa, especialmente na detecção precoce de atividades suspeitas em redes comprometidas. Com isso, Ameaças Persistentes Avançadas (APTs) representam um desafio significativo para a segurança cibernética, caracterizando-se por ataques sofisticados e direcionados. Este trabalho tem como objetivo investigar a movimentação lateral dentro de redes comprometidas, utilizando mineração de processos para detectar padrões suspeitos de comportamento. Para isso, foi configurado um ambiente experimental com máquinas virtuais simulando um ataque APT. Logs do sistema e do Wazuh registraram as atividades, possibilitando a extração de eventos relevantes para o presente estudo. A metodologia consiste na coleta de dados em dois cenários: uso normal e ataque, seguida pela aplicação de algoritmos de Process Mining, como AlphaMiner, através da biblioteca pm4py. Com isso, foi possível identificar diferenças estruturais entre os processos normais e aqueles manipulados pelo invasor, possibilitando a criação de indicadores de comprometimento (IoCs). Os resultados contribuem para a melhoria de mecanismos de detecção e resposta a APTs, auxiliando na proteção de redes corporativas contra ataques avançados.

Descrição

Palavras-chave

Segurança de computadores, Redes de computadores, Segurança de redes, Ciberterrorismo, Mineração de Processos, Teste de invasão (Medidas de segurança para computadores)

Referência

SILVA, Jonathas Felipe da. Detecção e modelagem de ameaças persistentes avançadas na fase de movimentação lateral: uma abordagem com process mining. 2025. 56 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2025.

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como openAccess