Bacharelado em Sistemas de Informação (Sede)
URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/12
Siglas das Coleções:
APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso
Navegar
3 resultados
Resultados da Pesquisa
Item Estudo comparativo de algoritmos de classificação supervisionada para classificação de polaridade em análise de sentimentos(2019) Albuquerque, Rotsen Diego Rodrigues de; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584; http://lattes.cnpq.br/6441716676783585The huge increase of data on the Internet, it is a rich source for public opinion assessment of a specific subject. Consequently, the number of opinions available makes decision-making impossible if it is necessary to read and analyze all opinions. Since the use of Machine Learning has been widely used, I will present a comparative study of two algorithms for classifying movie comments using techniques of natural language processing and Sentiment Analysis. The data obtained were obtained manually where through the competition site called Kaggle where we have about 50,000 comments on various films. The purpose of this study is also to use the concepts of data science and Machine Learning, natural language processing and sentiment analysis to add more information about the entertainment and film industry. That is why these algorithms were created so that it is possible to show the results for this domain in the of movies comments registered in one big site/platform of movie industry, the famous IMDB. After training and testing, the machine had an accuracy of 86 % on predicting sentiments on commented text from movies.Item Aspect term extraction in aspect-based sentiment analysis(2019) Francisco, Alesson Delmiro; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340The increasing use of the Internet in many directions has created a necessity to analyze alarge quantity of data. A large amount of data is presented as Natural Language Text,which is unstructured, with many ways to express the same information. It is an importanttask to extract information and meaning from those unstructured content, such as opinionson products or services. The need to extract and analyze the large amount of data createdevery day on the Internet surpassed the capabilities of human ability, as a result, manytext mining applications that extract and analyze textual data produced by humans areavailable today, one of such kind of applications is Sentiment Analysis, viewed as a vitaltask both to the academic and commercial fields, so that companies and service providerscan use that knowledge extracted from textual documents to better understand how theircustomers think about them or to know how their products and services are appreciated ornot by their customers. However, the task of analysing unstructured text is a difficult one,that is why it is necessary to provide coherent information and concise summaries to thoserevisions. Sentiment Analysis is the process of computationally identifying and categorizingopinions expressed in a piece of text, especially in order to determine the writer’s attitudetowards a particular topic or product. Aspect-Based Sentiment Analysis is a sub-field ofSentiment Analysis that aims to extract more refined and exact opinions, by breakingdown text into aspects. Most of the current work in the literature does not take profitof either semantic-based resources or NLP-based analysis in the preprocessing stage. Tocountermeasure these limitations, a study on these resources is done aiming to extract thefeatures needed to execute the task, and to make the best combination for ATE. This workhas the main goal of implementing and analysing a method of Aspect Term Extraction(ATE) of users reviews (restaurants and laptops). The proposed method is based on asupervised approach called Conditional Random Fields (CRF) which is able to optimizethe use of features for classification, this choice was justified by previous related work thatdemonstrate the effectiveness of CRF for ATE. Also, we are investigating the existingmethods and features for ABSA, as well as proposing new features and experimentingwith feature combinations in order to find the best features combinations, that are not yetcovered in the state of art. The detailed study is done by experimenting with word features,n-grams and custom made features using an CRF supervised algorithm to accomplish thetask of Aspect Term Extraction with results in terms of Precision, Recall and F-measure,the standard evaluation metrics adopted in the field. Finally, a comparative assessmentbetween the proposal method for ATE against other related work presented in the literaturehas shown that the method presented by this work is competitive.Item Uma abordagem de Game Learning Analytics para identificação de habilidades de leitura e escrita no ensino infantil(2018) Oliveira Neto, José Rodrigues de; Rodrigues, Rodrigo Lins; Amorim, Américo Nobre Gonçalves Ferreira; http://lattes.cnpq.br/7962263612352589; http://lattes.cnpq.br/5512849006877767; http://lattes.cnpq.br/3879751025550218The power that video games have to capture their players’ attention has brought with it the idea of using them with the main objective of reinforcing learning in educational context. Recent studies demonstrate that it is possible to analyze the interactions of players in such games, called Serious Games, to conclude and measure the learning obtained during interaction in those games. Given this context, this work aims to develop an analysis of data obtained from the interaction of players in one game, out of 20, applied during a research that proved their positive impact on the development of reading and writing skills of 4-years-old children. Three classifiers were selected: Naive Bayes, Support Vector Machines (SVM) and Logistic Regression, which were trained with the data resulting from the interaction of these players with the game and demonstrated the hit rate of each of the classifiers. In addition, this work also makes an analysis of the interactions considered more relevant by one of the models, finding relationships between the words proposed as challenge in the test and those present in the game, raising reflections that can be taken into account during the development of a educational game that aims to improve children’s reading and writing skills in early childhood education.