Bacharelado em Ciência da Computação (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/6


Siglas das Coleções:

APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Avaliação de algoritmos de rastreamento no problema de detecção de pessoas no mar
    (2023-09-13) Nascimento, Ramicés Moisés do; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/0247140467691140
    Sabe-se que nas praias de Pernambuco, ataques de tubarões são um medo constante da população. Muitos desses ataques são fatais, o que faz necessário que alguma atitude seja tomada, visto que as praias de Pernambuco atraem milhares de turistas por ano. Assim, pesquisadores da UFRPE iniciaram uma pesquisa visando desenvolver um sistema de rastreamento de pessoas no mar, que torna possível avisar aos salvavidas quando as pessoas ultrapassarem uma área considerada segura na praia, além de poder alocar uma quantidade maior desses profissionais em lugares com maior número de pessoas. O sistema foi divido em três etapas: segmentação da imagem, detecção dos banhistas e rastreamento dos mesmos. Este trabalho foca na terceira etapa. Rastrear pessoas é uma tarefa complexa e com custo computacional alto. Problemas com mudanças de iluminação do ambiente, mudança na direção dos alvos e mudanças no plano de fundo são apenas algumas das dificuldades que podem ser citadas. Assim, o trabalho desenvolvido tem como objetivo avaliar seis algoritmos de rastreamento de pessoas presentes na literatura em imagens de praia. Primeiro, rotulou-se manualmente uma base de dados de dez vídeos gravados na praia de Boa Viagem, em Pernambuco. Depois foram escolhidos seis algoritmos para serem avaliados. Depois, foi comparado o resultado de cada quadro dado como resposta pelo algoritmo, com o que tinha sido anteriormente rotulado e tirou-se uma média. Então, tirou-se uma média geral para saber a taxa de acerto do algoritmo e o tempo de execução do mesmo. Por fim, o melhor algoritmo foi escolhido para otmização através de um algoritmo genético, e verificou-se se houve alguma melhora no resultado. O CSRT foi o algoritmo que obteve o melhor resultado e após a otimização com o algoritmo genético, obteve-se uma melhoria de 20% na sua acurácia.
  • Imagem de Miniatura
    Item
    Rastreamento de pedestres 3D multi-câmera usando redes neurais de grafos
    (2022-05-27) Andrade, Isabella Stefanny Fernandes de; Lima, João Paulo Silva do Monte; http://lattes.cnpq.br/1916245590298485; http://lattes.cnpq.br/5529506615862118
    Rastrear a posição de pedestres ao longo do tempo através de imagens de câmeras é um tópico de pesquisa em visão computacional em ascensão. No cenário multi-câmera, as pesquisas são mais recentes ainda. Muitas soluções utilizam redes neurais supervisionadas para resolver esse problema, o que pode exigir um esforço muito grande para anotar os dados além de muito tempo gasto para treinar a rede. Os objetivos deste trabalho são: desenvolver variações de algoritmos de rastreamento de pedestres sendo desejável dispensar a necessidade de possuir dados anotados; e comparar os resultados obtidos através de métricas de acurácia. Este trabalho propõe, portanto, uma abordagem para rastrear pedestres no espaço 3D em ambientes multi-câmera utilizando a arquitetura de rede neural Message Passing Neural Network inspirada em grafos. Avaliamos a solução utilizando a base de dados WILDTRACK e um método de detecção generalizável, conseguindo 77,1% de MOTA ao treinar com dados obtidos de um algoritmo de rastreamento generalizável. O algoritmo consegue realizar o rastreamento a uma taxa de 40 quadros por segundo.