Bacharelado em Ciência da Computação (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/6


Siglas das Coleções:

APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    Tratamento de Kernels incompletos em redes bipartidas na predição de interações em redes biológicas
    (2020-10-30) Bastos, Tássia Laís Barros; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/2065961687962702
    Na última década, o estudo de redes farmacológicas recebeu bastante atenção dada sua relevância para a produção de novos medicamentos. Os estudos foram propiciados mediante ao grande volume de dados biológicos gerados, possibilitando entender e extrair conhecimento em cima deles. Contudo, apesar de interessante, este é um processo que traz consigo algumas barreiras no quesito viabilidade, particularmente quando os dados aparecem de forma heterogênea e contêm informações ausentes. Muitas abordagens distintas para predição de interações biológicas vêm sendo propostas, com destaque para a área de aprendizagem de múltiplos kernels Multiple Kernel Learning (MKL). O uso de métodos MKL em dados de natureza biológica também são comprometidos pela heterogeneidade das fontes de dados, mas associados aos métodos podem ser utilizadas técnicas de complementação de valores ausentes nas matrizes de kernel base. Esse processo de preenchimento geralmente é feito com técnicas simples, como imputação de zeros, média e mediana da matriz. Neste trabalho, técnicas de tratamento de valores faltosos foram avaliadas no contexto de redes bipartidas para solucionar as limitações relativas a heterogeneidade dos dados. Utilizamos três técnicas de imputação de valor único (média, mediana e zero) e uma técnica mais complexa de imputação preditiva (SVD). Todas as técnicas citadas já foram utilizadas para completude de matrizes no contexto de redes unipartidas. Nossas análises demonstraram que a técnica SVD apresentou um desempenho muito superior comparada às demais técnicas nas métricas avaliativas, trazendo resultados expressivos neste domínio para a utilização da técnica em modelos que utilizam redes bipartidas. As técnicas média e mediana apresentaram desempenhos similares, porém inferiores à SVD. E o preenchimento com zero apresentou o pior desempenho em relação a todas as outras técnicas aplicadas.