Engenharia Florestal (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/15


Siglas das Coleções:

APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    Inteligência artificial na classificação de uso e cobertura da terra no semiárido de Pernambuco
    (2020-11-03T03:00:00Z) Almeida, Gabriela Costa de; Silva, Emanuel Araújo; Moreira, Giselle Lemos; http://lattes.cnpq.br/6171199372079024; http://lattes.cnpq.br/2765651276275384
    A Floresta Tropical Seca brasileira, conhecida como Caatinga, está presente na região nordeste do Brasil e possui características climáticas severas, com clima seco e chuvas mal distribuídas. Essas características climáticas dificultam a análise por sensoriamento remoto devido às grandes diferenças de vegetação entre os períodos seco e chuvoso. Para auxiliar a análise de sensoriamento remoto neste bioma, este trabalho tem como objetivo testar diferentes algoritmos de Inteligência Artificial por meio de classificação supervisionada e identificar padrões de uso e cobertura da terra na cidade de Petrolina, em Pernambuco. Três algoritmos foram testados: Random Forest, Artificial Neural Networks e K-Nearest Neighbors usando o software QGIS e RStudio baseado em imagens LANDSAT 8 do período seco. Foram selecionadas 20 amostras das classes: Água, Agricultura, Área Urbana, Floresta e Solo Exposto, e essas amostras serviram de base para o treinamento dos algoritmos de classificação das imagens. Dados de ocupação e avaliação de qualidade de precisão foram obtidos usando acurácia do mapeamento e índice de Kappa, respectivamente: 0,9878706 e 0,9653555 para Random Forest; 0,9199973 e 0,9454833 para Artificial Neural Networks, 0,9873741 e 0,9598640 para o K-Nearest Neighbors, todos considerados excelentes. Esses valores foram superiores aos encontrados nos algoritmos mais comumente utilizados, como no algoritmo de Máxima Verossimilhança. Observou-se que o uso de algoritmos de inteligência artificial pode gerar melhores resultados na classificação do uso da terra em regiões semiáridas.