TCC - Bacharelado em Sistemas da Informação (Sede)
URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/427
Navegar
4 resultados
Resultados da Pesquisa
Item Análise de sentimentos dos tweets relacionados ao Superior Tribunal Federal no ano de 2019(2022-11-10) Cadengue, Guilherme Lapa de Araújo; Andrade, Ermeson Carneiro de; Bocanegra, Silvana; http://lattes.cnpq.br/4596111202208863; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/8502533221842320The Social media since its inception has affected all Internet users. Networks such as Twitter provide a new form of communication, interaction and, above all, a way of expressing opinions about the different events of life in society, consequently enabling the generation of content. Knowing the opinions of Brazilians about public institutions is very important for engaging people in society, as agents participating in decisions that affect all individuals, that is, it is a form of social inclusion. The application of Sentiment Analysis is carried out in several areas in order to extract the content of public opinion. The objective of this work is to identify the feelings of the Brazilian population about the Superior Federal Court of Brazil through the content of published tweets between January and December 2019. For this, the tweets in the period were collected, which were pre-processed, classified and then analyzed. The results show highly polarized opinions, but generally negative opinions regarding the STF are predominant (estimate at 51.7%).Item Análise de sentimentos em Tweets relacionados ao desmatamento da Floresta Amazônica(2021-12-17) Silva, Vinicius José Paes e; Andrade, Ermeson Carneiro de; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/7437953784606274The Amazon Forest is being devastated at the fastest pace in recent years. In 2021, the Amazon rainforest registers the largest accumulation of deforestation in 5 years, increasing from 13 thousand km2 between August 2020 and July 2021. An increase of 22% compared to the same period in the previous year, the highest number since 2006. Although many works address the issue of deforestation, none of them focus on analyzing the sentiments of the Brazilian population regarding the issue. This work presents an analysis of the sentiments of the Brazilian population related to the deforestation of the Amazon rainforest through the text mining of Twitter and aims to understand how Brazilian users opine and dialogue about the deforestation of the Amazon rainforest. The results reveal that Brazilian users tend to react to events related to deforestation in the Amazon forest on Twiter and that most users have a negative sentiment about the topic, reaching peaks of approximately 60% of tweets in a given time.Item Estudo comparativo de algoritmos de classificação supervisionada para classificação de polaridade em análise de sentimentos(2019) Albuquerque, Rotsen Diego Rodrigues de; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584; http://lattes.cnpq.br/6441716676783585The huge increase of data on the Internet, it is a rich source for public opinion assessment of a specific subject. Consequently, the number of opinions available makes decision-making impossible if it is necessary to read and analyze all opinions. Since the use of Machine Learning has been widely used, I will present a comparative study of two algorithms for classifying movie comments using techniques of natural language processing and Sentiment Analysis. The data obtained were obtained manually where through the competition site called Kaggle where we have about 50,000 comments on various films. The purpose of this study is also to use the concepts of data science and Machine Learning, natural language processing and sentiment analysis to add more information about the entertainment and film industry. That is why these algorithms were created so that it is possible to show the results for this domain in the of movies comments registered in one big site/platform of movie industry, the famous IMDB. After training and testing, the machine had an accuracy of 86 % on predicting sentiments on commented text from movies.Item Aspect term extraction in aspect-based sentiment analysis(2019) Francisco, Alesson Delmiro; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340The increasing use of the Internet in many directions has created a necessity to analyze alarge quantity of data. A large amount of data is presented as Natural Language Text,which is unstructured, with many ways to express the same information. It is an importanttask to extract information and meaning from those unstructured content, such as opinionson products or services. The need to extract and analyze the large amount of data createdevery day on the Internet surpassed the capabilities of human ability, as a result, manytext mining applications that extract and analyze textual data produced by humans areavailable today, one of such kind of applications is Sentiment Analysis, viewed as a vitaltask both to the academic and commercial fields, so that companies and service providerscan use that knowledge extracted from textual documents to better understand how theircustomers think about them or to know how their products and services are appreciated ornot by their customers. However, the task of analysing unstructured text is a difficult one,that is why it is necessary to provide coherent information and concise summaries to thoserevisions. Sentiment Analysis is the process of computationally identifying and categorizingopinions expressed in a piece of text, especially in order to determine the writer’s attitudetowards a particular topic or product. Aspect-Based Sentiment Analysis is a sub-field ofSentiment Analysis that aims to extract more refined and exact opinions, by breakingdown text into aspects. Most of the current work in the literature does not take profitof either semantic-based resources or NLP-based analysis in the preprocessing stage. Tocountermeasure these limitations, a study on these resources is done aiming to extract thefeatures needed to execute the task, and to make the best combination for ATE. This workhas the main goal of implementing and analysing a method of Aspect Term Extraction(ATE) of users reviews (restaurants and laptops). The proposed method is based on asupervised approach called Conditional Random Fields (CRF) which is able to optimizethe use of features for classification, this choice was justified by previous related work thatdemonstrate the effectiveness of CRF for ATE. Also, we are investigating the existingmethods and features for ABSA, as well as proposing new features and experimentingwith feature combinations in order to find the best features combinations, that are not yetcovered in the state of art. The detailed study is done by experimenting with word features,n-grams and custom made features using an CRF supervised algorithm to accomplish thetask of Aspect Term Extraction with results in terms of Precision, Recall and F-measure,the standard evaluation metrics adopted in the field. Finally, a comparative assessmentbetween the proposal method for ATE against other related work presented in the literaturehas shown that the method presented by this work is competitive.