TCC - Bacharelado em Sistemas da Informação (Sede)

URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/427

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 118
  • Imagem de Miniatura
    Item
    Aplicação web para detecção automática de URLs maliciosas com aprendizado de máquina
    (2025-08-08) Souza, Celso Soares Cassiano de; Oliveira, Lidiano Augusto Nóbrega de; http://lattes.cnpq.br/7399493881755815
    A segurança cibernética tem se tornado uma das principais preocupações da era digital, impulsionada pelo crescimento acelerado da internet e pela proliferação de ameaças como phishing, malware e roubo de dados. Este trabalho propõe uma abordagem baseada em aprendizado de máquina para classificar URLs como legítimas ou maliciosas, utilizando um conjunto abrangente de atributos extraídos diretamente das URLs e de fontes complementares, como registros WHOIS e informações de rede. Foram aplicados e analisados algoritmos como Random Forest, SVM e XGBoost sobre um conjunto de dados coletado de fontes confiáveis, como PhishTank e Kaggle. As características consideradas englobam aspectos léxicos, informações de rede, conexão e reputação. A avaliação dos modelos foi conduzida por meio de métricas como acurácia, precisão, recall e F1-score, evidenciando um desempenho satisfatório na detecção de sites maliciosos. Como aplicação prática, foi desenvolvida uma plataforma interativa com Streamlit, permitindo que qualquer usuário insira urna URL e receba uma análise imediata sobre sua legitimidade. A análise de importância das variáveis forneceu insights valiosos sobre os fatores mais influentes no processo de classificação, contribuindo tanto para a transparência quanto para a evolução futura do sistema.
  • Imagem de Miniatura
    Item
    Análise de desempenho do Gemini na estimativa de peso de alimentos por imagem
    (2025-08-06) Silva, Carlos Gabriel Farias da; Garrozi, Cícero; http://lattes.cnpq.br/0488054917286587
    Com o avanço das inteligências artificiais multimodais, cresce o interesse em sua aplicação na área da saúde para facilitar a análise nutricional e auxiliar no combate à obesidade. No entanto, a confiabilidade desses modelos para identificar alimentos e estimar porções a partir de imagens ainda é incerta, sendo fundamental mensurar seu desempenho de forma objetiva. Este trabalho avalia a capacidade do modelo Gemini de classificar ingredientes e estimar seus respectivos pesos (em gramas) a partir de fotografias de refeições. Para isso, foi desenvolvido um sistema automatizado que envia requisições à API do Gemini, utilizando um prompt textual padronizado, elaborado com técnicas de engenharia de prompt, e uma lista de ingredientes de referência. As respostas do modelo, obtidas em formato JSON, foram comparadas com dados reais para análise de desempenho. Os resultados obtidos nos experimentos indicaram um baixo desempenho geral. Na classificação de ingredientes, o modelo apresentou baixa precisão e sensibilidade (recall), com dificuldade em detectar itens como temperos e condimentos (por exemplo, azeite e sal) que estavam misturados a outros alimentos, embora tenha obtido altas taxas de aceno para ingredientes visualmente distintos, como morangos e ovos mexidos. Na estimativa de peso, o desempenho também foi insatisfatório, com altos valores de erro (MAE e RMSE) e coeficiente de determinação (R2) negativo, evidenciando tendência à superestimação e desempenho inferior a uma simples predição pela média.
  • Imagem de Miniatura
    Item
    MobiRural: promovendo acessibilidade e autonomia com rotas colaborativas
    (2025-08-06) Lima, Filipe de Freitas; Monteiro, Cleviton Vinicius Fonsêca; http://lattes.cnpq.br/9362573782715504; http://lattes.cnpq.br/5135426412225549
    A crescente expansão do da população ao com deficiência a nível mundial demanda o desenvolvimento de ferramentas que promovam a autonomia e melhorem a qualidade de vida, reduzindo barreiras e preconceitos. O desenvolvimento do MobiRural tem como propósito simplificar a navegação e o acesso de informações relevantes de forma acessível aos principais prédios e pontos de interesse no campus sede da Universidade Federal Rural de Pernambuco (UFRPE). Por meio da aplicação desenvolvida, observa-se que é possível traçar rotas otimizadas com percursos mais curtos e seguras com a inclusão colaborativa de pontos de perigo, resultando em maior autonomia para todos os usuários, com ênfase no público cego e cadeirante.
  • Imagem de Miniatura
    Item
    Aprendizado de máquina não supervisionado aplicado na dinâmica de preços de combustíveis no Brasil
    (2025-08-05) Lima, Andressa Luana Santana de; Gouveia, Roberta Macedo Marques; http://lattes.cnpq.br/2024317361355224; http://lattes.cnpq.br/0993590347039876
    Este trabalho realiza uma análise exploratória e de clusterização dos dados públicos da Agência Nacional do Petróleo (ANP) para os preços de combustíveis no Brasil em 2024. A partir de variáveis numéricas agregadas por região e por produto, foi aplicado o algoritmo K-means para identificar padrões de comportamento no mercado. As variáveis selecionadas buscaram representar aspectos como níveis médios de preço, variações sazonais, volume de registros e distribuição de revendas. Os resultados apontaram diferenças estruturais entre regiões e entre combustíveis, evidenciando a heterogeneidade do setor. O estudo evidencia a importância do uso de técnicas de agrupamento para explorar padrões relevantes no mercado de combustíveis.
  • Imagem de Miniatura
    Item
    Desenvolvimento de aplicação em Outsystems para área de saúde utilizando práticas do HIPAA compliance
    (2025-03-26) Carvalho, Udney Epaminondas; Bocanegra, Silvana; Marques, Paulo César Florentino; http://lattes.cnpq.br/1264573844331881; http://lattes.cnpq.br/4596111202208863; http://lattes.cnpq.br/3835096844800301
    A iminente necessidade das empresas de adotarem o processo de transformação digital induziu muitas a buscarem recursos que possam fornecer entregas ágeis e robustas para a digitalização dos seus processos. Esta transformação digital também atinge o setor de saúde, que atrelado aos desafios inerentes a própria natureza destas mudanças, também precisa lidar com cautela ao tratar das informações sensíveis dos pacientes e o compartilhamento destes dados. Para atender a demandas como estas, onde é necessário agilidade e segurança para a elaboração de projetos, tem se popularizado o uso de plataformas low-code, que por usar os benefícios da computação em nuvem e a possibilidade de criar código utilizando recursos visuais, vai facilitar o aprendizado técnico e permitir a criação de aplicações robustas em um tempo reduzido. O presente trabalho tem como objetivo apresentar o uso de uma plataforma low-code (OutSystems) no desenvolvimento de uma aplicação web para gerenciamento e realização de consultas médicas. Como estudo de caso, será utilizado um produto da start up ZophIA.tech, que faz uso de inteligência artificial aprimorada por análise geométrica para auxiliar no diagnóstico de esquizofrenia e outras doenças mentais através da fala e gestos de pacientes. Serão implementadas as regras de segurança de dados do padrão americano HIPAA para tratar com informações sensíveis dos pacientes.
  • Imagem de Miniatura
    Item
    Desenvolvimento da Plataforma Corporate: autogestão de serviços de saúde para empresas
    (2025-03-26) Morais, Gabriel Lourenço de; Bocanegra, Silvana; http://lattes.cnpq.br/4596111202208863; http://lattes.cnpq.br/7194069568041433
    A rede privada de saúde do Brasil ano após ano vem sofrendo prejuízos que atingem patamares de bilhões de reais e ainda assim uma parcela significativa da população brasileira não possui acesso à saúde de qualidade. Afetadas diretamente por este cenário, as empresas são impactadas financeiramente por reajustes livres de negociação dos planos de saúde, forçando-as a buscar alternativas seguras, sustentáveis e de qualidade. Neste relatório, será apresentado um produto desenvolvido na empresa Exmed capaz de proporcionar uma economia real para as empresas brasileiras, ofertando um serviço de autogestão da saúde para seus colaboradores que, em uma única plataforma, poderão gerenciar seus gastos com saúde, aprovar os procedimentos necessários e assim evitar desperdícios. Também serão abordados os detalhes técnicos do desenvolvimento, envolvendo os conceitos fundamentais de plataformas modernas, as ferramentas utilizadas na implementação, as estratégias de performance, a estruturação de um projeto escalável e auto-gerenciável, além dos módulos e formas de comunicação entre os sistemas internos da Exmed. Por fim, serão apresentados alguns resultados obtidos pela empresa com a implementação desta plataforma.
  • Imagem de Miniatura
    Item
    Detecção de fake news: uma abordagem baseada em Large Language Models e Prompt Engineering
    (2025-03-20) Fonseca, Pablo Weslley Silva da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/6258598537884813
    Este trabalho aborda o uso de Large Language Models (LLMs) para a detecção de fake news ou notícias falsas no idioma inglês e português. As notícias falsas têm gerado impactos negativos, como desinformação e conflitos sociais, sendo amplamente disseminadas pelas redes sociais. Embora métodos tradicionais de verificação sejam eficazes, como checagem manual e agências de verificação de fatos, a aplicação de algoritmos de machine learning e deep learning trouxe avanços importantes. No entanto, esses modelos apresentam limitações, como perda de contexto semântico e custos de treinamento. A introdução da arquitetura Transformers possibilitou avanços significativos com LLMs, como BERT, GPT e T5, devido à sua capacidade de compreender padrões linguísticos complexos. Este trabalho propõe uma abordagem de detecção de notícias falsas a partir recuperações de informações pela Web e o modelo Qwen2.5-7B-Instruct, comparando o desempenho com propostas que combina recuperação de informações com modelos tradicionais e LLMs. Os resultados destacam vantagens e desvantagens, contribuindo para futuras melhorias em sistemas automatizados de detecção de notícias falsas.
  • Imagem de Miniatura
    Item
    Geração aumentada para recuperação de dados urbanos integrados: consolidando dados do IBGE, Censo, CNEFE e OSM para a otimização do planejamento urbano
    (2025-03-21) Conceição, Keyson Raphael Acioli da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/3198610477751043
    Nos últimos anos, os campos da Inteligência Artificial (IA) e do aprendizado de máquina (AM) revolucionaram o domínio do planejamento urbano, pois permitem que volumes substanciais de dados sejam analisados de forma eficaz, incentivando melhor alocação de recursos e entregas de serviços públicos. Para atingir este objetivo, o agente inteligente proposto neste trabalho reúne dados de várias fontes, incluindo Censo Demográfico, Cadastro Nacional de Endereços para Fins Estatísticos - CNEFE, e OpenStreetMap (OSM) para oferecer respostas baseadas em contexto relacionadas à distribuição da população e acesso a diferentes serviços urbanos. A abordagem proposta inclui um pipeline de processamento que implementa normalização, indexação vetorial das informações e representação semântica para tornar as consultas mais eficazes. Para avaliar o sistema proposto, foi conduzido um experimento com especialistas em planejamento urbano e analisamos a relevância, clareza e utilidade das respostas geradas pelo sistema. Tais resultados mostram que o agente é capaz de detectar áreas com pouca cobertura de serviços necessários, indicando uma alocação adequada. No entanto, outros desafios, tais como a necessidade de melhor clarificação das respostas e ampliação da cobertura espacial, foram reconhecidos como oportunidades para trabalho futuro.
  • Imagem de Miniatura
    Item
    Detecção e modelagem de ameaças persistentes avançadas na fase de movimentação lateral: uma abordagem com process mining
    (2025-03-20) Silva, Jonathas Felipe da; Lins, Fernando Antonio Aires; Lima, Milton Vinicius Morais de; http://lattes.cnpq.br/3409150377712315; http://lattes.cnpq.br/2475965771605110; http://lattes.cnpq.br/1017193816402551
    A crescente ameaça de ataques cibernéticos complexos tem exigido estratégias avançadas de defesa, especialmente na detecção precoce de atividades suspeitas em redes comprometidas. Com isso, Ameaças Persistentes Avançadas (APTs) representam um desafio significativo para a segurança cibernética, caracterizando-se por ataques sofisticados e direcionados. Este trabalho tem como objetivo investigar a movimentação lateral dentro de redes comprometidas, utilizando mineração de processos para detectar padrões suspeitos de comportamento. Para isso, foi configurado um ambiente experimental com máquinas virtuais simulando um ataque APT. Logs do sistema e do Wazuh registraram as atividades, possibilitando a extração de eventos relevantes para o presente estudo. A metodologia consiste na coleta de dados em dois cenários: uso normal e ataque, seguida pela aplicação de algoritmos de Process Mining, como AlphaMiner, através da biblioteca pm4py. Com isso, foi possível identificar diferenças estruturais entre os processos normais e aqueles manipulados pelo invasor, possibilitando a criação de indicadores de comprometimento (IoCs). Os resultados contribuem para a melhoria de mecanismos de detecção e resposta a APTs, auxiliando na proteção de redes corporativas contra ataques avançados.
  • Imagem de Miniatura
    Item
    Previsão de preço de ações de empresas do setor elétrico com algoritmos de aprendizado de máquina
    (2025-03-21) Silva, Herculles Hendrius Coutinho Mesquita; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584
    O presente trabalho tem como objetivo comparar a eficiência de diferentes algoritmos de aprendizado de máquina na previsão de preços de ações do setor de energia elétrica. Para isso, foram analisados quatro algoritmos: Long Short-Term Memory (LSTM), Support Vector Regression (SVR), Regressão Linear e Random Forest. Os dados utilizados compreendem uma série histórica de preços e indicadores adicionais, como inflação, Índice de energia elétrica (IEE) e variação cambial, que foram processados e utilizados como entrada para os modelos. A análise foi realizada com base em métricas de erro, como Erro Médio Absoluto (MAE), Erro Quadrático Médio (MSE) e Raiz do Erro Quadrático Médio (RMSE), bem como pela avaliação da diferença percentual entre os preços previstos e os valores reais. Os resultados mostram que o algoritmo LSTM obteve o melhor desempenho na previsão de preços de fechamento, seguido pela Regressão Linear, enquanto o Random Forest apresentou maior margem de erro e se monstrando inadequado para a aplicação neste problema. Este estudo realiza a aplicação de algoritmos preditivos no mercado financeiro, demonstrando o potencial do aprendizado de máquina como ferramenta para análise e tomada de decisão no setor de energia elétrica.