TCC - Bacharelado em Sistemas da Informação (Sede)
URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/427
Navegar
Item Sistema de aprendizado de máquina para predição do tempo de esforço de tarefas de desenvolvimento de software(2021-12-14) Sitonio, Tiago Pedro da Silva; Monteiro, Cleviton Vinicius Fonsêca; http://lattes.cnpq.br/9362573782715504; http://lattes.cnpq.br/0915757895643807A estimativa de esforço é uma das principais métricas para o planejamento e gerenciamento do processo de desenvolvimento de software, pois proporciona auxílio na previsão de custos e prazos para realização de um projeto. Em consideração a isso, este trabalho teve como objetivo realizar uma análise do processo de construção de um modelo de Aprendizado de Máquina com base na metodologia CRISP-DM, utilizando Algoritmo de Aprendizado de Máquina Automatizado (AutoML) para encontrar o melhor algoritmo de regressão como objetivo de encontrar a estimativa de tempo de determinada atividade. Para esta análise, dados de atividades realizadas por 29 empresas foram utilizados. O banco de dados é constituído por diferentes tipos de dados como, por exemplo, dado Numérico em formato de Linguagem Natural para descrever as atividades. Por causa disso foi realizado o processo de Tokenização a fim de transformar em dados totalmente regressivos para execução dos algoritmos. Em conjunto a isto, métodos de análise dos dados, pré-processamento, métodos de afunilamento como Seleção de Feaures, Alteração de Pesos e Combinação de Colunas serão aplicados para realizar análises do banco de dados.Este projeto foi desenvolvido através da linguagem de programação Python com apoio das suas bibliotecas, dentre elas a biblioteca Pandas para manipulação e análise de dados e Scikitlearn para acesso a algoritmos de Aprendizado de Máquina. Os resultados obtidos e avaliados apontam que o tratamento individual para cada empresa com pré-processamento e construção do modelo de algoritmo de previsão devem ser levados em consideração para encontrar os melhores resultados de estimativa de esforço por meio dos algoritmos.
