Navegando por Autor "Nascimento, André Câmara Alves do"
Agora exibindo 1 - 8 de 8
- Resultados por Página
- Opções de Ordenação
Item Aprendizagem de máquina quântica e comitê quântico de classificadores(2019-12-02) Araujo, Ismael Cesar da Silva; Nascimento, André Câmara Alves do; Silva, Adenilton José da; http://lattes.cnpq.br/0314035098884256; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/7125338940009959Aprendizagem de máquina quântica trata-se de uma subárea de computação quântica que estuda, dentre outras coisas, a criação de equivalentes quânticos de modelos clássicos de classificação. Um comitê de classificadores, trata-se de um modelo de classificação cuja saída é resultado da composição das saídas de diversos classificadores que compõe o comitê. Comitê de classificadores é um modelo de aprendizado supervisionado que pode ser utilizado como tipo de aprendizado livre de otimização de parâmetros. Ou seja, sem o uso da etapa de treinamento. Com a premissa de que ao se utilizar um conjunto suficientemente grande de classificadores medianos pode-se obter um comitê com um bom desempenho. Este trabalho investiga as diferenças de desempenho no uso equivalente quântico do comitê de classificadores, para classificadores treinados e não treinados. Onde foram feitas simulações, cujo desempenho foi mensurado a partir do calculo de amplitudes de probabilidades do sistema. E os modelos de aprendizagem de máquina do comitê foram executados sobre bases benchmark disponíveis pela biblioteca scikitlearn.Item Avaliação de métodos de imputação de valores ausentes para a predição de interações fármaco-proteína(2024-03-08) Santos, Victor Vidal dos; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/7999257997046465Na última década, o estudo de redes farmacológicas tem recebido muita atenção devido à sua relevância no processo de descoberta de medicamentos. Muitas abordagens diferentes para prever interações biológicas têm sido propostas, especialmente na área de aprendizado de múltiplos kernels (MKL). Tais métodos compreendem abordagens integrativas que podem lidar com fontes de dados heterogêneas, mas sofrem com o problema de dados incompletos. Técnicas para lidar com valores faltosos nas matrizes kernel base podem ser utilizadas, geralmente baseadas em técnicas simples, como imputação de zeros, média e mediana da matriz. Neste trabalho, foram avaliadas técnicas de tratamento de valores faltosos no contexto de redes bipartidas. Nossas análises mostraram que, dependendo da quantidade de dados faltantes, a técnica k-NN e SVD teve um desempenho muito melhor do que as outras técnicas, trazendo resultados animadores, enquanto o preenchimento zero apresentou o pior desempenho em relação a todos os outros métodos avaliadosItem Evaluation of dimensionality reduction and truncation techniques forword embeddings(2021-03-03) Aoun, Paulo Henrique Calado; Nascimento, André Câmara Alves do; Silva, Adenilton José da; http://lattes.cnpq.br/0314035098884256; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/1048218441267310O uso de word embeddings está se tornando muito comum em diversas tarefas de processamento de linguagem natural. Na maioria das vezes, eles exigem recursos computacionais que não podem ser encontrados na maior parte dos dispositivos móveis atuais. Neste trabalho, avaliamos uma combinação de estratégias de truncagem numérica e redução de dimensionalidade para obter representações vetoriais menores sem perdas substanciais no desempenho.Item Fostering autonomy through augmentative and alternative communication(2021-02-26) Uchoa, João Pedro Cavalcanti; Falcão, Taciana Pontual da Rocha; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/5706959249737319; http://lattes.cnpq.br/8316954734346733Item Modelos de recomendação sensível ao contexto em ambientes de comunicação aumentativa alternativa: naive bayes, redes neurais e aprendizagem federada(2025-03-19) Nascimento, Fabio Augusto Souza do; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/2170186670973508A inteligência artificial (IA) está presente em diversos setores da sociedade, promovendo constantes avanços tecnológicos e sociais. Um dos subconjuntos da IA é a aprendizagem de máquina (AM), que possibilita aos computadores aprenderem e evoluírem com base em dados. O conhecimento obtido por meio desse processo auxilia em diferentes áreas, desde a análise e interpretação de informações até a usabilidade de aplicativos. Compreender o funcionamento e as possibilidades dessa ferramenta pode ser um ativo valioso. Entre as múltiplas aplicações possíveis, a AM desempenha um papel importante na comunicação aumentativa e alternativa (CAA), auxiliando indivíduos que apresentam dificuldades nessas interações por meio de aplicativos. Essas aplicações estão em constante evolução e, com as inovações tecnológicas, possibilitam o desenvolvimento de sistemas capazes de compreender o ambiente em que uma pessoa está inserida e oferecer recomendações personalizadas aos usuários. Este trabalho investiga o uso dos Sistemas de Recomendação Sensível ao Contexto (SRSC) em aplicações da CAA, considerando as características individuais dos usuários com base em seus dados e contexto. São utilizados modelos de IA, tais como Naïve Bayes (NB), Redes Neurais Artificiais (RNA) e Aprendizagem Federada (AF), para comparar diferentes abordagens e avaliar sua capacidade de fornecer resultados relevantes. A partir dos experimentos realizados, foi possível verificar que modelos personalizados demonstram melhor desempenho em relação a abordagens globais, oferecendo recomendações mais relevantes aos usuários finais. Nesse sentido, a personalização e o uso de variáveis contextuais podem melhorar significativamente a experiência de pessoas que dependem de CAA, aumentando a agilidade e a assertividade da comunicação.Item Prevendo a evasão escolar em uma instituição de ensino técnico utilizando mineração de dados educacionais(2021-07-16) Lemos, Ítalo Vinícius do Rego; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/9146227756985212A evasão escolar é um dos principais problemas que ocorrem no âmbito da educação e vem se tornando uma realidade bastante frequente dentro das instituições de ensino públicas ou privadas, resultando em consequências imensuráveis tanto na vida do estudante que deixa de frequentar a escola quanto para a sociedade como um todo. Por ser um fenômeno que preocupa muito os profissionais da educação, se faz necessário revertê-lo, assim estes profissionais necessitam de recursos que sejam eficientes em demonstrar conhecimento dentro e fora do ambiente de ensino e traçar estratégias para lidar com tal cenário. Ser capaz de prever uma possível evasão traz benefícios tando para o estudante quanto para as instituições. A partir disso, uma metodologia que vem se mostrando hábil no combate à evasão escolar e capaz de fornecer conhecimento para a instituição de ensino é a Mineração de Dados Educacionais. Com base nisso, este trabalho teve como objetivo aplicar técnicas de Mineração de Dados e de Aprendizagem de Máquina para prever possíveis casos de evasão antes que o estudante ingresse na instituição de ensino. Através de indicadores sociais e econômicos do estudante e de sua família ele é classificado como um potencial evasor ou não. Este estudo adotou uma base de dados real de uma instituição de ensino pública brasileira, com dados de candidatos que concorreram ao seu processo de ingresso (vestibular) para uma vaga no ensino técnico. Durante a pesquisa foram utilizados 3 modelos de classificação Decision Tree, Random Forest e XGBoost tendo o algoritmo XGBoost atingindo uma taxa de 74% de acerto na predição de evasores, sendo superior aos demais mas ainda apresentando uma alta número de estudantes classificados como não evadidos mas que se evadiram de fato. Diante desses resultados, concluímos que se faz necessário mais indicadores para detectar, de forma satisfatória, o possível candidato que irá se evadir.Item Recomendação sensível ao contexto para comunicação aumentativa e alternativa baseada em aprendizagem de máquina(2024-02-23) Silva, Ulisses Chaves; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/8993061329549653Comumente, observa-se a adoção de novas técnicas baseadas em inteligência artificial e aprendizagem de máquina (AM) em diversos contextos. Com o avanço das redes neurais artificiais, que possibilitam a representação de diversos tipos de dados e a compreensão das complexas relações entre eles, essa tendência foi ainda mais impulsionada. No entanto, a literatura atual mostra-se escassa ao tentar encontrar estudos atualizados que relacionem essas tecnologias a metodologias pedagógicas para resolver os diversos problemas sociais e promover a inclusão. Este trabalho propõe abordagens atuais utilizadas em AM para a recomendação de pictogramas em um sistema de Comunicação Aumentativa e Alternativa (AAC). Diante da complexidade das necessidades de usuários de AAC, neste trabalho dois modelos neurais sensíveis ao contexto são apresentados e comparados. Esses modelos utilizam técnicas de aprendizagem de máquina para considerar o contexto dinâmico do usuário para gerar recomendações, adaptando-se à localização e ao tempo específicos desse usuário que possui alguma deficiência na comunicação. Adicionalmente, são destacados outros trabalhos que foram usados como base para a criação dessa solução para o problema de recomendação de pictogramas existente na aplicação móvel Livox.Item Tratamento de Kernels incompletos em redes bipartidas na predição de interações em redes biológicas(2020-10-30) Bastos, Tássia Laís Barros; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/2065961687962702Na última década, o estudo de redes farmacológicas recebeu bastante atenção dada sua relevância para a produção de novos medicamentos. Os estudos foram propiciados mediante ao grande volume de dados biológicos gerados, possibilitando entender e extrair conhecimento em cima deles. Contudo, apesar de interessante, este é um processo que traz consigo algumas barreiras no quesito viabilidade, particularmente quando os dados aparecem de forma heterogênea e contêm informações ausentes. Muitas abordagens distintas para predição de interações biológicas vêm sendo propostas, com destaque para a área de aprendizagem de múltiplos kernels Multiple Kernel Learning (MKL). O uso de métodos MKL em dados de natureza biológica também são comprometidos pela heterogeneidade das fontes de dados, mas associados aos métodos podem ser utilizadas técnicas de complementação de valores ausentes nas matrizes de kernel base. Esse processo de preenchimento geralmente é feito com técnicas simples, como imputação de zeros, média e mediana da matriz. Neste trabalho, técnicas de tratamento de valores faltosos foram avaliadas no contexto de redes bipartidas para solucionar as limitações relativas a heterogeneidade dos dados. Utilizamos três técnicas de imputação de valor único (média, mediana e zero) e uma técnica mais complexa de imputação preditiva (SVD). Todas as técnicas citadas já foram utilizadas para completude de matrizes no contexto de redes unipartidas. Nossas análises demonstraram que a técnica SVD apresentou um desempenho muito superior comparada às demais técnicas nas métricas avaliativas, trazendo resultados expressivos neste domínio para a utilização da técnica em modelos que utilizam redes bipartidas. As técnicas média e mediana apresentaram desempenhos similares, porém inferiores à SVD. E o preenchimento com zero apresentou o pior desempenho em relação a todas as outras técnicas aplicadas.
