Navegando por Assunto "Predição"
Agora exibindo 1 - 3 de 3
- Resultados por Página
- Opções de Ordenação
Item Development of machine learning models for the prediction of dissolved oxygen in aquaculture 4.0(2021-02-24) Freitas, Fábio Alves de; Nóbrega, Obionor de Oliveira; Lins, Fernando Antonio Aires; http://lattes.cnpq.br/2475965771605110; http://lattes.cnpq.br/8576087238071129; http://lattes.cnpq.br/5725435192607619O mundo enfrenta o problema de alimentar uma população crescente, que chegará a mais de 9 bilhões de pessoas até 2050. Desta forma, existe a necessidade do desenvolvimento de atividades que promovam a produção de alimentos, nas dimensões da sustentabilidade (social, técnicoeconômica, e ambiental). Neste contexto destacam-se os sistemas de IoT voltados à aquicultura 4.0, que possibilitam o cultivo de altas produções por unidade de volume, com baixo impacto ambiental. Entretanto, esses sistemas precisam ser extremamente controlados, necessitando de sensores para realização de leituras em tempo real das métricas da água, com destaque para o sensor de oxigênio dissolvido (OD), que desempenha um papel essencial na determinação da qualidade e quantidade de “habitat” disponível para os organismos presentes no sistema. Mesmo com essa importância, esse sensor é muitas vezes não utilizado, devido a seu alto custo associado. Como solução alternativa para este problema, foram propostos modelos de aprendizagem de máquina para a predição do OD, e que utilizam as leituras da temperatura e do pH como entradas. Foram realizados experimentos comparando diferentes técnicas de escalonamento de dados e o desempenho da predição em diferentes estações do ano e foram utilizadas métricas de regressão para avaliação dos modelos implementados. Os resultados mostraram que o modelo LSTM proposto pode realizar predições OD e ser aplicado em sistemas de IoT e aqüicultura 4.0.Item Estudo de técnicas preditivas para o auxílio a gestores na pandemia de COVID-19(2022-05-27) França, Eliana Maria Silva de; Soares, Rodrigo Gabriel Ferreira; http://lattes.cnpq.br/2526739219416964; http://lattes.cnpq.br/2782168150783950O objetivo principal deste trabalho é propor uma alternativa aos levantamentos estatísticos exploratórios, no suporte à tomada de decisão dos gestores, durante o enfrentamento à pandemia da COVID-19. Para tal, foi-se criada uma metodologia, utilizando aprendizado de máquina para fornecer uma nova ferramenta de predição de mortes causadas por COVID-19, a partir de dados abertos que contenham características sanitárias, demográficas e populacionais. De tal modo que, a partir deste estudo se possa desenvolver um modelo de inteligência artificial capaz de auxiliar no enfrentamento da pandemia de COVID-19. Dos 3 algoritmos de inteligência artificial utilizados (Decision Tree, Support Vector Machine e Multilayer Perceptron), o modelo baseado em Support Vector Machine foi o que apresentou o melhor desempenho, pois é o que possui o menor Erro Absoluto Médio, métrica utilizada para medir a qualidade de modelos de inteligência artificial baseados em regressão.Item Predição do consumo energético de dispositivos LoRa usando aprendizagem de máquina(2024-12-10) Pimentel, Henrique Pablo Pinheiro dos Santos; Araújo, Danilo Ricardo Barbosa de; http://lattes.cnpq.br/2708354422178489; http://lattes.cnpq.br/0078523045227122A Internet das Coisas (IoT) é um conceito em constante evolução que tem conquistado destaque tanto na comunidade acadêmica quanto na indústria. Dentro dela, o consumo energético é um fator fundamental para determinar o tempo de funcionamento dos dispositivos e a frequência necessária para realizar a manutenção deles. Este artigo investiga a aplicação de algoritmos de aprendizado de máquina para predição do consumo energético de dispositivos IoT-LoRa, permitindo estimar a duração da bateria dos dispositivos e sua autonomia. A metodologia considerou a criação de um conjunto de dados a partir de experimentos com placas de desenvolvimento Event stream processing (ESP32), capturando métricas como tempo de hibernação, tipo de conexão e consumo energético. Técnicas de Inteligência Artificial (IA) são então aplicadas para prever o consumo energético com base nessas variáveis. De acordo com os resultados obtidos, a melhor técnica para prever o consumo energético é a Decision Tree, com um coeficiente de determinação superior a 96%. O estudo contribui para processos decisórios que visam selecionar dispositivos IoT considerando a autonomia projetada para as baterias de tais dispositivos.
