Navegando por Assunto "Inteligência artificial"
Agora exibindo 1 - 20 de 47
- Resultados por Página
- Opções de Ordenação
Item A comprehensive software aging analysis in LLMs-based systems(2025) Santos, César Henrique Araújo dos; Andrade, Ermeson Carneiro de; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/9618931332191622Large language models (LLMs) are increasingly popular in academia and industry due to their wide applicability across various domains. With their rising use in daily tasks, ensuring their reliability is crucial for both specific tasks and broader societal impact. Failures in LLMs can lead to serious consequences such as interruptions in services, disruptions in workflow, and delays in task completion. Despite significant efforts to understand LLMs from different perspectives, there has been a lack of focus on their continuous execution over long periods to identify signs of software aging. In this study, we experimentally investigate software aging in LLM-based systems using Pythia, OPT, and GPT Neo as the LLM models. Through statistical analysis of measurement data, we identify suspicious trends of software aging associated with memory usage under various workloads. These trends are further confirmed by the Mann-Kendall test. Additionally, our process analysis reveals potential suspicious processes that may contribute to memory degradation.Item A importância dos Dados Estruturados, Não Estruturados e Semiestruturados os desafios da sua utilização nas organizações brasileiras(2022-02-18) Simões, Rachel Albuquerque Mangueira; França, Sônia Virginia Alves; http://lattes.cnpq.br/6477581135066258; http://lattes.cnpq.br/1476668673947358Devido ao avanço contínuo do Big Data e a necessidade cada vez mais de alcançar vantagem competitiva no mercado, as organizações estão se deparando com os novos desafios desta nova realidade e acompanhando a importância dos dados estruturados e não estruturados no mercado. Os dados são os atores principais no papel do desenvolvimento de softwares, são capazes de identificar padrões comportamentais de acordo com os diferentes nichos de clientes, insights e identificação de novas oportunidades a partir de sua análise. Desta forma, neste trabalho acadêmico foram levantados as vantagens e desvantagens, importância e desafios, baseada em pesquisas observacionais científicas participante de forma natural, onde a coleta de dados foi necessária para conseguir as informações, utilizando aspectos, analisando fatos e fenômenos do objeto de estudo em questão, participando efetivamente das atividades com finalidade de destacar os pontos de maior relevância para as organizações e sociedade no geral.Item Abordagem comparativa entre a aplicação da metodologia KATAM e inventário tradicional em plantios de Khaya senegalensis (Desr.) A. Juss(2023-09-15) Silva, Kamilo Alaboodi da; Silva, Emanuel Araújo; Hakamada, Rodrigo Eiji; http://lattes.cnpq.br/4186459700983170; http://lattes.cnpq.br/2765651276275384; http://lattes.cnpq.br/5612600854790108O inventário florestal auxilia gestores de floresta nas tomadas de decisões. A instalação, mensuração e gestão de uma rede de parcelas de inventário são onerosas e despende tempo. Técnicas de sensoriamento remoto ganham cada vez mais espaço no setor florestal por terem o potencial de redução de custos sem incorrer em perdas de precisão, porém, com baixa adesão em decorrência do elevado investimento. Nesse contexto, a empresa sueca Katam Technologies desenvolveu uma solução para aquisição e análise de dados florestais: KATAM Forest, que funciona através do algoritmo KASLAM, ainda pouco difundido e testado em florestas nacionais. Diante do exposto, este trabalho teve como objetivo comparar, em termos de acurácia e rendimento operacional, a aplicação da inteligência artificial KASLAM através do aplicativo KATAM Forest na atividade de inventário florestal em plantios de Khaya senegalensis (Desr.) A. Juss (5 anos), localizado no estado de Pernambuco, com as técnicas de amostragem de um inventário florestal realizado de forma tradicional. Foram coletados dados de diâmetro à altura do peito (DAP) dentro de 9 parcelas, bem como vídeos com a inteligência artificial, gravados dentro das coordenadas das unidades amostrais. Foi realizada a estatística descritiva dos dados de DAP das parcelas e em seguida foi aplicado um teste paramétrico de normalidade de Shapiro-Wilk, onde, ao ser rejeitada hipótese de nulidade, seria necessária a realização de um teste não-paramétrico U de Mann-Whitney para entender a diferença de médias. O rendimento operacional foi avaliado através dos dados de tempo obtidos durante o processo de inventário dentro das parcelas em ambas as abordagens. A variável DAP nas duas metodologias de inventário não tem uma distribuição clara concentrada perto da média. O teste não-paramétrico resultou que médias obtidas do DAP não apresentaram diferenças estatísticas entre as metodologias ao nível de 5% de significância. O rendimento operacional da metodologia Katam foi metade do tempo do inventário tradicional. As tecnologias Katam são bastante promissoras, no sentido de redução de tempo e custos nas operações de inventário florestal. Portanto, recomenda-se maiores estudos para que o assunto seja difundido de maneira prática.Item Análise de desempenho do Gemini na estimativa de peso de alimentos por imagem(2025-08-06) Silva, Carlos Gabriel Farias da; Garrozi, Cícero; http://lattes.cnpq.br/0488054917286587Com o avanço das inteligências artificiais multimodais, cresce o interesse em sua aplicação na área da saúde para facilitar a análise nutricional e auxiliar no combate à obesidade. No entanto, a confiabilidade desses modelos para identificar alimentos e estimar porções a partir de imagens ainda é incerta, sendo fundamental mensurar seu desempenho de forma objetiva. Este trabalho avalia a capacidade do modelo Gemini de classificar ingredientes e estimar seus respectivos pesos (em gramas) a partir de fotografias de refeições. Para isso, foi desenvolvido um sistema automatizado que envia requisições à API do Gemini, utilizando um prompt textual padronizado, elaborado com técnicas de engenharia de prompt, e uma lista de ingredientes de referência. As respostas do modelo, obtidas em formato JSON, foram comparadas com dados reais para análise de desempenho. Os resultados obtidos nos experimentos indicaram um baixo desempenho geral. Na classificação de ingredientes, o modelo apresentou baixa precisão e sensibilidade (recall), com dificuldade em detectar itens como temperos e condimentos (por exemplo, azeite e sal) que estavam misturados a outros alimentos, embora tenha obtido altas taxas de aceno para ingredientes visualmente distintos, como morangos e ovos mexidos. Na estimativa de peso, o desempenho também foi insatisfatório, com altos valores de erro (MAE e RMSE) e coeficiente de determinação (R2) negativo, evidenciando tendência à superestimação e desempenho inferior a uma simples predição pela média.Item Análise de mensagens de Commit com IA: uma nova perspectiva para o algoritmo SZZ(2025-03-17) Souza, Camila Nunes de Paula; Cabral, George Gomes; http://lattes.cnpq.br/8227256452129177; http://lattes.cnpq.br/8347479672060133Este trabalho propõe uma abordagem inovadora para aprimorar o algoritmo SZZ utilizado na identificação de commits que introduzem defeitos em sistemas de software. A metodologia proposta envolve o uso do ChatGPT, para realizar uma análise semântica das mensagens de commit, classificando-as em duas categorias: ”introduz bug”e ”não introduz bug”. O objetivo é melhorar a confiabilidade das classificações geradas pelo SZZ, reduzindo falsos positivos e melhorando a qualidade dos dados utilizados para a geração de modelos preditivos de detecção de defeitos. Para validar a abordagem, foram realizados experimentos com duas bases de dados (Neutron e Nova), utilizando os classificadores Random Forest e SVC, além de técnicas de balanceamento como oversampling e undersampling. Os resultados demonstram que a integração do ChatGPT ao SZZ resultou em uma redução significativa de commits erroneamente classificados como introdução de bugs, além de melhorar o desempenho dos classificadores, especialmente o Random Forest. Conclui-se que a utilização de LLMs pode aprimorar a eficácia do SZZ, contribuindo para a melhoria da qualidade de software e a eficiência na detecção de defeitos.Item Análise de soluções criadas em tecnologia da informação com uso de inteligência artificial para cidades inteligentes(2024-08-31) Silva, Lucas Melo da; Machado, Luiz Claudio Ribeiro; http://lattes.cnpq.br/6359712741593257Esse artigo tem como objeto de estudo o impacto causado nos cidadãos Recifenses usuários das soluções em Tecnologia da informação criadas pela Empresa Municipal de Informática - EMPREL. o Objetivo é medir esse impacto baseado nas funcionalidades dos programas em benefício aos usuários, descrevê-los e demonstrar sua relevância mensurada pelos números de usuários cadastrados e beneficiados com as políticas. A metodologia é a pesquisa bibliográfica qualitativa e quantitativa com uso de dados estatísticos secundários. Verificou-se quais os programas mais acessados e quais os benefícios trazidos aos usuários. Foi possível concluir que os programas de tecnologia da informação da Prefeitura do Recife são relevantes para seus usuários, sejam na forma de benefícios financeiros, informativos e participação popular nos problemas e desafios de melhoria e políticas públicas na comunidade.Item Análise fundamentalista e técnica: a importância do analista e do progresso tecnológico no processo de análise de investimentos(2019) Silva, Diego de Oliveira; Gomes, Sónia Maria Fonseca Pereira Oliveira; http://lattes.cnpq.br/9795791528582607Este trabalho explora as análises fundamentalista e técnica e a importância do analista e do progresso tecnológico no processo de análise de investimentos, tendo em vista a importância do mercado financeiro no processo de alocação ótima de recursos na economia. Para tal, através de pesquisa do tipo bibliográfica, com base numa revisão narrativa e integrativa foi realizada uma análise descritiva dos principais aspectos de cada umas das técnicas de análises de investimentos. Com ênfase, sob a ótica da análise fundamentalista, na análise do cenário econômico e na importância da informação contábil, e, sob a ótica da análise técnica, nos principais gráficos e indicadores e na importância da tecnologia. Além disso, foi explicitado o relevante papel do analista e do progresso tecnológico como fatores significativos para o sucesso na implementação bem-sucedida das técnicas na análise de investimentos. Também foi realizada uma breve abordagem a respeito da inteligência artificial e do advento da tecnologia dos robôs investidores e como tais tecnologias vem revolucionando a forma de operar no mercado e contribuindo com a eficácia das técnicas. A discussão mostrou que o equilíbrio e a complementaridade são a chave para o sucesso na implementação das metodologias de análise de investimentos, assim como o analista e a tecnologia contribuem reciprocamente para otimização dos resultados alcançados.Item Avaliação de algoritmos baseados em Deep Learning para Localizar placas veiculares brasileiras em ambientes complexos(2019) Marques, Bruno Henrique Pereira; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/3847789259699701Com o aumento da quantidade de veículos particulares, nota-se o crescimento do número de violações das leis de trânsito, roubo de veículos e assim, se faz necessário uma melhor gestão e fiscalização do tráfego. Um veículo e seu proprietário são reconhecidos através da placa veicular (PV) única e obrigatória, e para que sejam fiscalizados e terem dados extraídos com maior eficiência, é recomendável a utilização de sistemas automatizados para detecção e reconhecimento de placas veiculares. Este trabalho apresenta um estudo e avaliação de algoritmos baseados em Aprendizagem Profunda para localizar PV brasileiras em ambientes complexos. Para a realização dos experimentos, foi criado um banco de imagens de PV brasileiras baseada em problemas como imagens com resolução, qualidade, iluminação e perspectiva de cena diferentes. Foram utilizados os algoritmos de Aprendizagem Profunda YOLOv2 e YOLOv3, o qual ainda não foi estudado para o melhor do nosso conhecimento, neste contexto. Além disso, foi utilizado o algoritmo Tree-structured Parzen Estimator (TPE) para realizar a otimização de hiperparâmetros e maximizar o desempenho das redes neurais convolucionais selecionadas. Para a avaliação, foram utilizadas as métricas de desempenho: tempo de predição, Intersection over Union (IoU) e taxa de confiança. O resultado dos experimentos mostrou que o YOLOv3 apresentou melhor desempenho, obtendo 99.3% de detecção das placas veiculares.Item Avaliação de algoritmos multi-classe para classificação de solicitações enviadas a Ouvidoria Geral do Estado de Pernambuco(2021-03-29) Carvalho, Luiz Henrique Teixeira; Ferreira, Jeneffer Cristine; http://lattes.cnpq.br/3000364145302421A Ouvidoria Geral é um órgão público que abrange todo o estado de Pernambuco e todos os dias recebe diversas solicitações com os mais variados temas envolvendo todos os outros órgãos do estado, com isso em determinadas épocas do ano, essas solicitações podem chegar a onerar os recursos do estado. O objetivo principal desse trabalho é aplicar os algoritmos de classificação multi-classe nos dados obtidos a partir do portal da transparência, e tentar prever as solicitações enviadas a Ouvidoria Geral do Estado de Pernambuco Para obtenção dos dados da Ouvidoria Geral do Estado de Pernambuco, foi executada uma raspagem de dados no Portal da Transparência de Pernambuco. Foram obtidos os dados dos anos de 2017, 2018 e 2019. Foi aplicado nos dados da ouvidoria os algoritmos de Arvore de Decisões(Decision Tree), Floresta Aleatoria(Random Forest), Bagging e kNN. Os resultados mostraram que os algoritmos de classificação automática de dados, particularmente os algoritmos de Decision Tree(Arvore de decisões), Random Forest (Floresta Aleatória) e Bagging conseguiram de 55 por cento e 32 por cento nas classes de tipo e órgão respectivamente, tendo um aproveitamento de um acerto a cada duas tentativas na classe de tipo e de um acerto a cada três tentativas na classe de órgão. Os algoritmos também foram avaliados acerca de seu desempenho em tempo de criação e treinamento do modelo, tendo o algoritmo de Decision Tree(Arvore de decisões) como o mais performático.Item Chatbots textuais no apoio administrativo para alunos universitários: comparação entre uso de palavras-chave e modelos de linguagem de grande escala(2025-08-01) Silva, Erick Gabriel de Lima; Pimentel, João Henrique Correia; http://lattes.cnpq.br/8257035194560179; https://lattes.cnpq.br/7816577990350764A burocracia nos processos administrativos das instituições de ensino superior representa um desafio para os estudantes, especialmente em contextos com comunicação pouco acessível e protocolos institucionais complexos. Nesse cenário, chatbots surgem como ferramentas promissoras para automatizar o atendimento e facilitar o acesso às informações acadêmicas. Este trabalho apresenta uma análise comparativa entre dois chatbots desenvolvidos para auxiliar alunos de uma unidade da Universidade Federal Rural de Pernambuco (UFRPE) em dúvidas relacionadas ao cotidiano universitário: um baseado em palavras-chave e outro fundamentado em um modelo de linguagem de grande escala (LLM, do inglês Large Language Models), com uso da técnica de Geração Aumentada por Recuperação (RAG, do inglês Retrieval-Augmented Generation). Após a implementação, foi realizado um experimento com 15 estudantes, os quais interagiram com ambos os sistemas e avaliaram aspectos como precisão, clareza e utilidade, além de indicarem qual chatbot prefeririam utilizar no dia a dia. As respostas foram tratadas estatisticamente por meio do teste não paramétrico de Wilcoxon, o qual revelou que, embora não tenha havido diferenças estatisticamente significativas entre os dois sistemas nos critérios avaliados, a maioria dos participantes (9) demonstraram preferência pelo chatbot com RAG, enquanto 3 escolheram o baseado em palavras-chave e 3 apontaram utilidade em ambos. Os resultados indicam que, apesar de desempenhos similares em métricas objetivas, as características subjetivas como: linguagem mais fluida, maior naturalidade das respostas e melhor compreensão de perguntas mal formuladas podem ter influenciado a escolha dos usuários para o chatbot baseado em inteligência artificial, ratificando o potencial do uso de RAG em assistentes virtuais voltados ao contexto educacional.Item Classificação de banhistas na faixa segura de praia(2018) Silva, Ricardo Luna da; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/3088880066515750Visando evitar riscos em ambientes aquáticos,afogamentos e ataque de tubarão,áreas de praia devem ser monitoradas constantemente. Quando necessário, as equipes de resgate devem responder com velocidade ao caso. Este trabalho visa propor um algoritmo de classificação de pessoas como parte de um sistema para monitoramento automáticoemáreasdepraia.Certosfatoresdoambientesãobastantedesafiadores, como variação de brilho em dias nublados, a posição do sol em diferentes momentos do dia, dificuldade em segmentação de imagens, pessoas submersas e posição afastada da câmera. Para esse tipo de problema na literatura é comumente encontrado, para detecção de pessoas, o uso de descritores de imagem em conjunto com um classificador. Este trabalho realiza um estudo em imagens de praia usando os seguintes descritores de imagem e suas combinações em pares: Momentos de Hu, Momentos de Zernike,Filtro de Gabor,Histograma de Gradientes Orientados(HOG),Padrões Binários Locais(LBP) e Haar. Além disso,uma técnica de redução de dimensionalidade (PCA)é aplica para seleção de características. A taxa de detecção é avaliada com os seguintes classificadores :Random Forest, classificador e em cascata e Support Vector Machine(SVM) comkernel linear e radial.Os experimentos demonstraram que o classificador SVM com kernel radial usando os descritores HOG e LBP aplicando a técnica PCA mostrou resultados promissores, obtendo 90,31% de precisão.Item Coh-Metrix PT-BR: uma API web de análise textual para à educação(2021-03-02) Salhab, Raissa Camelo; Mello, Rafael Ferreira Leite de; http://lattes.cnpq.br/6190254569597745; http://lattes.cnpq.br/6761163457130594O CohMetrix é um sistema computacional que provê diferentes medidas de análise textual incluindo legibilidade, coerência e coesão textual. Essas medidas permitem uma análise mais profunda de diferentes tipos de textos educacionais como redações, respostas de perguntas abertas e mensagens em fóruns educacionais. Este artigo apresenta o protótipo, site e API, com a adaptação das medidas do CohMetrix para a língua portuguesa do Brasil.Item Comparação de algoritmos de reconhecimento de gestos aplicados à sinais estáticos de Libras(2019-07-12) Cruz, Lisandra Sousa da; Cordeiro, Filipe Rolim; Macário Filho, Valmir; http://lattes.cnpq.br/4346898674852080; http://lattes.cnpq.br/4807739914511076; http://lattes.cnpq.br/2111589326272463A Língua Brasileira de Sinais (Libras) foi criada a fim de suprir uma necessidade de comunicação não-verbal para os surdos, que durante muito tempo foram doutrinados à ter o português como sua primeira língua. Atualmente, a Libras é a segunda língua oficial do Brasil e primeira língua dos surdos, assim como o português é para o ouvinte. Entretanto, mesmo com tamanho reconhecimento, a segunda língua oficial do Brasil não é conhecida pela maior parte da população brasileira. O processo de inclusão visa proporcionar igualdade aos deficientes, de forma que a deficiência não seja um fator impeditivo à convivência em sociedade. Com o advento da tecnologia e avanços da Inteligência Artificial (IA), foram criados artifícios tecnológicos visando propiciar inclusão. Na IA, o reconhecimento de padrões é um dos subtemas mais abordados na atualidade, sendo bastante aplicada para a classificação de gestos de diversas línguas de sinais na literatura. Essa pesquisa tem como principal tarefa identificar as mãos que formam um determinado sinal de Libras e em seguida reconhecer a que classe pertence, classificando-o. Baseado na classificação da Língua de Sinais Americana, a Feature Fusion-based Convolutional Neural Network (FFCNN), uma rede estendida da Convolutional Neural Network (CNN), obteve a melhor acurácia em comparação a outras redes, dentre elas a Visual Geometry Group (VGG). Diante desse cenário, esse trabalho aplica a FFCNN à gestos estáticos de Libras a fim de verificar se a FFCNN obtém a melhor acurácia assim como obteve na Língua de Sinais Americana. Para alcançar esse objetivo são comparados três classificadores: VGG com uma variação da CNN com 13 e 16 camadas; FFCNN e uma rede Multi Layer Perceptron (MLP) usada no reconhecimento de gestos estáticos de Libras na literatura. Os algoritmos foram aplicados em um dataset de Libras que contém 9.600 imagens de 40 sinais. Os resultados demonstram que a rede VGG com 16 camadas obteve a maior acurácia dentre modelos descritos neste trabalho, com valor de 99,45%.Item Comparação de modelos de ia para extração de dados em glicosímetros(2024-09-25) Carmo, Genivaldo Braynner Teixeira do; Correia, Julyanne Maria dos Santos; Silva Filho, Ronaldo Rodrigues da; Sampaio, Pablo Azevedo; Medeiros, Robson Wagner Albuquerque deA diabetes é uma condição crônica que requer monitoramento constante dos níveis de glicose no sangue, sendo essencial o uso de glicosímetros para a obtenção dessas informações. Este trabalho tem como objetivo comparar três modelos de Inteligência Artificial, Gemini, GPT-4o e Llava 1.5, para identificar qual deles extrai, de forma mais eficaz, os dados de glicose, data e hora dos glicos´ımetros. Utilizando técnicas de engenharia de prompt, busca-se aprimorar a precisão e eficiência na extração desses dados, otimizando o monitoramento e contribuindo para a melhor gestão da saúde de pacientes diabéticos.Item Desenvolvimento de aplicação em Outsystems para área de saúde utilizando práticas do HIPAA compliance(2025-03-26) Carvalho, Udney Epaminondas; Bocanegra, Silvana; Marques, Paulo César Florentino; http://lattes.cnpq.br/1264573844331881; http://lattes.cnpq.br/4596111202208863; http://lattes.cnpq.br/3835096844800301A iminente necessidade das empresas de adotarem o processo de transformação digital induziu muitas a buscarem recursos que possam fornecer entregas ágeis e robustas para a digitalização dos seus processos. Esta transformação digital também atinge o setor de saúde, que atrelado aos desafios inerentes a própria natureza destas mudanças, também precisa lidar com cautela ao tratar das informações sensíveis dos pacientes e o compartilhamento destes dados. Para atender a demandas como estas, onde é necessário agilidade e segurança para a elaboração de projetos, tem se popularizado o uso de plataformas low-code, que por usar os benefícios da computação em nuvem e a possibilidade de criar código utilizando recursos visuais, vai facilitar o aprendizado técnico e permitir a criação de aplicações robustas em um tempo reduzido. O presente trabalho tem como objetivo apresentar o uso de uma plataforma low-code (OutSystems) no desenvolvimento de uma aplicação web para gerenciamento e realização de consultas médicas. Como estudo de caso, será utilizado um produto da start up ZophIA.tech, que faz uso de inteligência artificial aprimorada por análise geométrica para auxiliar no diagnóstico de esquizofrenia e outras doenças mentais através da fala e gestos de pacientes. Serão implementadas as regras de segurança de dados do padrão americano HIPAA para tratar com informações sensíveis dos pacientes.Item Desenvolvimento de um sistema auxiliar para controle de acesso de veículos para a Universidade Federal Rural de Pernambuco(2024-03-08) Izidio, Stefany Vitória da Conceição; Garrozi, Cícero; http://lattes.cnpq.br/0488054917286587; http://lattes.cnpq.br/0642557485551355Atualmente, o controle de acesso de veículos à Universidade Federal Rural de Pernambuco é feito manualmente em papéis por funcionários da universidade. Também há a liberação direta de veículos que se cadastram na universidade e recebem um adesivo específico para usar no para-brisa. Este tipo de controle não é muito seguro, por poder ser facilmente clonado e usado por veículos sem autorização real. Além disso, há um curto desvio de atenção do funcionário quando ele realiza o trabalho manual de anotar a placa no papel. Este trabalho tem o objetivo de tornar o processo de controle de veículos mais confiável e seguro através do desenvolvimento de um protótipo de um sistema que auxilia no controle de acesso. Este trabalho propõe uma solução mediante a captura de uma imagem da placa, identificação da placa do veículo e da verificação em uma base de dados se a placa é previamente cadastrada ou não. E, o sistema produz um sinal luminoso para indicar ao funcionário se a placa é ou não cadastrada. Para isso, foi montado um produto de hardware e desenvolvido um software embutido. O hardware é composto por um conjunto de dispositivos eletrônicos como LEDs, câmera, dispositivo de processamento, etc. O software é um conjunto de bibliotecas que foi, em sua maior parte, desenvolvido em Python. Para o software embutido, foi usado um conjunto de imagens com fotos de placas de carros brasileiros para treinar um modelo de detecção de objetos para detectar as placas. Por fim, foi utilizado um serviço de reconhecimento ótico de caracteres para extrair o conteúdo da placa, possibilitando assim registrar e emitir o sinal luminoso ao usuário.Item Detecção de fake news: uma abordagem baseada em Large Language Models e Prompt Engineering(2025-03-20) Fonseca, Pablo Weslley Silva da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/6258598537884813Este trabalho aborda o uso de Large Language Models (LLMs) para a detecção de fake news ou notícias falsas no idioma inglês e português. As notícias falsas têm gerado impactos negativos, como desinformação e conflitos sociais, sendo amplamente disseminadas pelas redes sociais. Embora métodos tradicionais de verificação sejam eficazes, como checagem manual e agências de verificação de fatos, a aplicação de algoritmos de machine learning e deep learning trouxe avanços importantes. No entanto, esses modelos apresentam limitações, como perda de contexto semântico e custos de treinamento. A introdução da arquitetura Transformers possibilitou avanços significativos com LLMs, como BERT, GPT e T5, devido à sua capacidade de compreender padrões linguísticos complexos. Este trabalho propõe uma abordagem de detecção de notícias falsas a partir recuperações de informações pela Web e o modelo Qwen2.5-7B-Instruct, comparando o desempenho com propostas que combina recuperação de informações com modelos tradicionais e LLMs. Os resultados destacam vantagens e desvantagens, contribuindo para futuras melhorias em sistemas automatizados de detecção de notícias falsas.Item Estudo comparativo de técnicas de seleção de contextos em sistemas de recomendação de domínio cruzado sensivéis ao contexto(2018) Brito, Victor Sales de; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/0340874538265508Existem diversas abordagens para a implementação dos sistemas de recomendação, dentre elas, a abordagem de “sistemas de recomendação de domínio cruzado sensíveis ao contexto” (Cross-Domain Context-Aware Recommender Systems - CD-CARS), empregada neste trabalho, pois possibilita a melhoria na qualidade das recomendações usando vários domínios (ex.: livros, filmes e músicas) e considerando a aplicação de contextos (ex.: estação do ano, tempo, companhia, localização). No entanto, é necessário cautela ao utilizar contextos para realizar sugestões de itens, uma vez que os contextos podem influenciar negativamente o desempenho da recomendação quando considerados “irrelevantes”. Portanto, a seleção de contextosrelevanteséumfatorchaveparaodesenvolvimentodotipodesistemaCD-CARS e, dentro da literatura, constatou-se uma escassez de trabalhos acerca da aplicação de técnicas de seleção em conjuntos de dados com informações contextuais e de domínio cruzado. Dessa forma, este trabalho aplicou as técnicas de seleção Information Gain (IG), Teste qui-quadrado (χ2), Minimum Redundancy Maximum Relevance (MRMR) e Monte Carlo Feature Selection (MCFS),emdozeconjuntosdedadoscomtrêsdiferentesdimensões contextuais (tempo, localização e companhia) e domínios distintos (livros, televisão e músicas). Por fim, a partir dos resultados encontrados, averiguou-se que a técnica MCFS conseguiu classificar a relevância dos contextos de forma mais satisfatória.Item Explainable Artificial Intelligence - uma análise dos trade-offs entre desempenho e explicabilidade(2023-08-18) Assis, André Carlos Santos de; Andrade, Ermeson Carneiro de; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/3963132175829207A explicabilidade é essencial para que os usuários entendam, confiem e gerenciem com eficiência sistemas computacionais que utilizam inteligência artificial. Desta forma, assim como a assertividade, entender como se deu o processo decisório dos modelos é fundamental. Embora existam trabalhos que se concentrem na explicabilidade de algoritmos de inteligência artificial, é importante destacar que, até onde sabemos, nenhum deles analisou os trade-offs entre desempenho e explicabilidade de forma abrangente. Nesse sentido, esta pesquisa tem como objetivo preencher essa lacuna, investigando tanto algoritmos transparentes, como Arvore de Decisão e Regressão Logística, quanto algoritmos opacos, como Floresta Aleatória e Máquina de Vetores de Suporte, a fim de avaliar os trade-offs entre desempenho e explicabilidade. Os resultados revelam que os algoritmos opacos apresentam uma baixa explicabilidade e não têm uma boa performance quanto ao tempo de resposta devido á sua complexidade, contudo são mais assertivos. Em contra partida, os algoritmos transparentes possuem uma explicabilidade mais efetiva e uma melhor performance quanto ao tempo de resposta, porém, em nossos experimentos, observamos que a acurácia obtida foi menor do que a acurácia dos modelos opacos.Item Geração aumentada para recuperação de dados urbanos integrados: consolidando dados do IBGE, Censo, CNEFE e OSM para a otimização do planejamento urbano(2025-03-21) Conceição, Keyson Raphael Acioli da; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340; http://lattes.cnpq.br/3198610477751043Nos últimos anos, os campos da Inteligência Artificial (IA) e do aprendizado de máquina (AM) revolucionaram o domínio do planejamento urbano, pois permitem que volumes substanciais de dados sejam analisados de forma eficaz, incentivando melhor alocação de recursos e entregas de serviços públicos. Para atingir este objetivo, o agente inteligente proposto neste trabalho reúne dados de várias fontes, incluindo Censo Demográfico, Cadastro Nacional de Endereços para Fins Estatísticos - CNEFE, e OpenStreetMap (OSM) para oferecer respostas baseadas em contexto relacionadas à distribuição da população e acesso a diferentes serviços urbanos. A abordagem proposta inclui um pipeline de processamento que implementa normalização, indexação vetorial das informações e representação semântica para tornar as consultas mais eficazes. Para avaliar o sistema proposto, foi conduzido um experimento com especialistas em planejamento urbano e analisamos a relevância, clareza e utilidade das respostas geradas pelo sistema. Tais resultados mostram que o agente é capaz de detectar áreas com pouca cobertura de serviços necessários, indicando uma alocação adequada. No entanto, outros desafios, tais como a necessidade de melhor clarificação das respostas e ampliação da cobertura espacial, foram reconhecidos como oportunidades para trabalho futuro.
- «
- 1 (current)
- 2
- 3
- »
