Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Simião, Augusto Fernando de Melo"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Análise da utilização de aprendizado de máquina na redução do volume de alertas benignos
    (2019) Simião, Augusto Fernando de Melo; Soares, Rodrigo Gabriel Ferreira; http://lattes.cnpq.br/2526739219416964; http://lattes.cnpq.br/0529129636604731
    Para auxiliar no combate a ataques cibernéticos, Managed Security Services Providers (MSSPs) usam SIEMs (Security Information and Event Management). SIEMs são capazes de agregar, processar e correlacionar vastas quantidades de eventos provenientes de diferentes sistemas, alertando analistas de segurança da existência de ameças, tais como vírus de computador e ataques cibernéticos, em redes de computadores. No entanto, SIEMs são conhecidos pelas altas taxas de alertas benignos (alertas que não representam ameaça) em relação aos malignos (alertas que representam ameaça). Devido aos altos volumes e predominância de falsos alertas, o analista passa a ignorar alertas como um todo, o que inclui aqueles que representam incidentes em potencial, aumentando assim o risco da rede ser comprometida. Esse fenômeno é conhecido como fadiga de alerta e tem sido alvo frequente da aplicação de técnicas de aprendizado de máquina para a redução dos volume de alertas benignos. SIEMs modernos utilizam aprendizado de máquina, na correlação de eventos, para que apenas alertas que realmente representam possíveis ameaças sejam reportados. No entanto, essa correlação não leva em conta a deliberação do analista de segurança, permitindo assim que os SIEMs continuem gerando alertas previamente identificadas como benignos. Este trabalho investiga a utilização dos algorítimos Naïve Bayesian Learning, Árvore de Decisão e Random Forest, para a redução do volume de alertas benignos, utilizando alertas previamente identificados por analistas, ao invés da corrente de eventos que geram tais alertas. Dessa forma, foi possível mostrar, através de experimentos, que técnicas de aprendizado de máquina supervisionado podem ser aplicadas na identificação e alertas benignos previamente analisados.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS