Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Simião, Augusto Fernando de Melo"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Análise da utilização de aprendizado de máquina na redução do volume de alertas benignos
    (2019) Simião, Augusto Fernando de Melo; Soares, Rodrigo Gabriel Ferreira; http://lattes.cnpq.br/2526739219416964; http://lattes.cnpq.br/0529129636604731
    To aid in combating cyber attacks, Managed Security Services Providers (MSSPs) use SIEMs (Security Information and Event Management). SIEMs are able to aggregate, process and correlate vast amounts of events from different systems, alerting security analysts of the existence of threats, such as computer viruses and cyber attacks, in computer networks. However, SIEMs are known for the high rates of benign alertas (non-threatening alerts) warnings relative to malign alerts (threatening alerts). Due to the high volumes and prevalence of benign alertas, the analyst ignores alerts as a whole, which includes those that represent potential threats, thereby increasing the risk of a network compromise. This phenomenon is known as alert fatigue and has been a frequent target of applying machine learning techniques to reduce the volume of benign alerts. Modern SIEMs use machine learning, in correlation of events, so that only alerts that actually represent possible threats are reported. However, this correlation does not consider the analyst’s deliberation, thus allowing SIEMs to continue to generate alerts previously identified as benign. This paper investigates the use of the algorithms Naïve Bayesian Learning, Decision Tree and Random Forest, to reduce the volume of benign alerts using alerts previously identified by analysts, rather than the chain of events that generate such alerts. In this way, it was possible to show, through experiments, that supervised machine learning techniques can be applied in the identification of alerts previously identified as benign.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão