Navegando por Autor "Silva, Guilherme Melo da"
Agora exibindo 1 - 1 de 1
- Resultados por Página
- Opções de Ordenação
Item Avaliação entre algoritmos de filtragem colaborativa baseada em vizinhança e transferência de conhecimento para CD-CARS(2019) Silva, Guilherme Melo da; Silva, Douglas Véras e; http://lattes.cnpq.br/2969243668455081; http://lattes.cnpq.br/7122596102314881Recommendations in scenarios with the lack of preferences expressed by users is an importantlimitation for Recommendation Systems (RS). Due to this problem, cross-domain RS (CDRS)searches have gained relevance, where collaborative filtering (CF) is one of the most exploitedtechniques in this area. The CD-CARS system shows that the use of contextual information,available in user preferences, can optimize CF neighborhood-based algorithms, a techniquewidely used in multidomain CF. Although they provide accurate recommendations, some neigh-borhood-based algorithms such as the one used in the CD-CARS have the limitation of the useof multi-domains only in the occurrence of user overlap between domains, a non-trivial scenarioin real databases. This work presents a comparative analysis of different recommendation algo-rithms involving collaborative filtering techniques. The CD-CARS’ NNUserNgbr-transClosure(CF neighborhood-based) and Tracer (CF transfer learning-based) algorithms, were used as thebasis for the recommendation algorithms. In the experiments, the CF algorithms were integratedinto the context-aware techniques, addressed in the CD-CARS: Contextual Pre-Filtering andPost-Filtering, being applied on two data sets, formed by two auxiliary domains and one target,with and without overlap between domains. The MAE and RMSE performance metrics wereused to evaluate the algorithms. The results of the experiments showed that the Tracer algorithmpresented better results concerning the NNUserNgbr-transClosure algorithm in all experimentscenarios without user overlap, with and without the use of the Contextual Pre-Filtering or Post-Filtering.