Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva Neto, Francisco Queiroga da"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Sistema para detecção de intrusão de botnets utilizando aplicações de machine learning
    (2021-12-13) Silva Neto, Francisco Queiroga da; Assad, Rodrigo Elia; http://lattes.cnpq.br/3791808485485116; http://lattes.cnpq.br/7900008638092251
    Communication tools and the continuous advancement of the Internet have also resulted in the sophistication of tools and methods to carry out attacks against users and their computers, with features that facilitate criminal activities in the cyber environment. Among cyber threats, botnets have characteristics and advantages that have expanded their use in recent years, becoming a tool employed extensively by attackers to conduct attacks and gain control of various devices connected to computer networks. The way these threats behave and are updated brings several challenges to the intrusion detection area. In this paper, a study is presented on the application of machine learning techniques in detecting botnets by analyzing network traffic flows. The study aims to show how pattern classification techniques can be applied in intrusion detection systems to identify similarities between the infrastructure of botnets, where works in the literature were studied to address an application that aims to improve the problems related to the attribute selection steps and the data processing, crucial steps in machine learning models.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão