Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva, Thiago César de Miranda"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Uso de machine learning para previsão de valores de apartamentos no município do Recife
    (2023-09-12) Silva, Thiago César de Miranda; Monteiro, Cleviton Vinicius Fonsêca; Soares, Rodrigo Gabriel Ferreira; http://lattes.cnpq.br/2526739219416964; http://lattes.cnpq.br/9362573782715504; http://lattes.cnpq.br/8285740572952516
    The COVID-19 pandemic has brought with it a series of economic effects and transformations related to behavior and the way people live, which, in turn, have had repercussions on property prices and real estate demand. In this context, property price forecasting assumes an extremely important role, contributing to more informed decisions, mitigating risks, and promoting greater transparency in the real estate sector. The implementation of automation in price forecasting further enhances this dynamic, significantly improving accuracy, efficiency, and reliability of predictions, while providing adaptability to economic fluctuations with greater agility. Utilizing listings available on OLX, a georeferenced database was created to generate a residential apartment price prediction model in Recife, using machine learning models in AutoML. This tool automates the development of machine learning models, enabling rapid experimentation and a focus on problem-solving. The work indicates that the poor geographical distribution of the data has biased the results of the models. Furthermore, it was concluded that the data found on online buying and selling platforms are insufficient for generating a machine learning model that achieves an acceptable level of accuracy in Recife, mainly because transaction values for the properties are not provided, only the advertised prices. However, this current work provides significant contributions to the advancement of research related to automation in real estate price prediction.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão