Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva, Herculles Hendrius Coutinho Mesquita"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Previsão de preço de ações de empresas do setor elétrico com algoritmos de aprendizado de máquina
    (2025-03-21) Silva, Herculles Hendrius Coutinho Mesquita; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584
    O presente trabalho tem como objetivo comparar a eficiência de diferentes algoritmos de aprendizado de máquina na previsão de preços de ações do setor de energia elétrica. Para isso, foram analisados quatro algoritmos: Long Short-Term Memory (LSTM), Support Vector Regression (SVR), Regressão Linear e Random Forest. Os dados utilizados compreendem uma série histórica de preços e indicadores adicionais, como inflação, Índice de energia elétrica (IEE) e variação cambial, que foram processados e utilizados como entrada para os modelos. A análise foi realizada com base em métricas de erro, como Erro Médio Absoluto (MAE), Erro Quadrático Médio (MSE) e Raiz do Erro Quadrático Médio (RMSE), bem como pela avaliação da diferença percentual entre os preços previstos e os valores reais. Os resultados mostram que o algoritmo LSTM obteve o melhor desempenho na previsão de preços de fechamento, seguido pela Regressão Linear, enquanto o Random Forest apresentou maior margem de erro e se monstrando inadequado para a aplicação neste problema. Este estudo realiza a aplicação de algoritmos preditivos no mercado financeiro, demonstrando o potencial do aprendizado de máquina como ferramenta para análise e tomada de decisão no setor de energia elétrica.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão