Navegando por Autor "Silva, Andrey Giordane Costa"
Agora exibindo 1 - 1 de 1
- Resultados por Página
- Opções de Ordenação
Item Análise de lacases de microrganismos com aplicações em biorremediação usando ferramentas de bioinformática(2022-10-21) Silva, Andrey Giordane Costa; Buarque, Diego de Souza; http://lattes.cnpq.br/7609652740088882; http://lattes.cnpq.br/8075252796586989The improper disposal and dumping of household waste, industrial waste, electronic waste, fertilizers, pesticides can elevate environmental concentrations of contaminants that cause significant impacts on human health and biodiversity. Given this problem, the development of technologies that assist in the environmental treatment of sites contaminated by these xenobiotics is of great importance. An applicable method for environmental remediation is biodegradation by enzymatic catalysis. Fungal lacases (in particular those of the genus Trametes) have a great potential for application in the area of wastewater treatment and bioremediation. Thus, a sequence analysis becomes important for the determination of lacases from some microorganisms. For this, we used the 1KYA, which represents the code of an active lacase structure from T. versicolor present in the Protein Data Bank (PDB). This structure is complexed to the ligand 2,5-xylidine, which is derived from commercially used solvents. Through this analysis, it is possible to understand structural factors important for the enzyme to detoxify environmentally harmful compounds, such as 2,5-xylidine. The structures and binding sites were analyzed using the BIOVIA Discovery Studio Visualizer 2021 program, where we were able to identify the amino acid residues and bonds that are part of the lacase 1KYA site that interact with 2,5-xylidine. To identify important structural factors in the sequences of lacases from microorganisms, a comparison was made in the primary sequence of the active lacase (1KYA) with a known sequence of the lacase from Trametes versicolor to determine what would be the degree of homology between them and if all amino acids that are part of the active site identified. By checking the degree of homology between different types of lacases from different organisms, it was possible to identify sequences of 16 microorganisms with a percentage equal to or greater than 79.56%. In addition, it was possible to identify the amino acid residues conserved in lacases from different organisms and the residues that changed among the sequences of this enzyme.