Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Santos, Daniel Ramos Correia dos"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Detecção de doença cardiovascular ou diabetes utilizando machine learning
    (2024-03-07) Santos, Daniel Ramos Correia dos; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584
    Cardiovascular diseases and diabetes represent significant challenges for public health, requiring effective diagnostic and prevention approaches. This work proposes an approach based on machine learning models to support these processes. Using a database from the IBGE national health survey, the study investigated how different variables affect the detection of these diseases. Using algorithms such as Random Forest, XGBoost and SVM, predictive models were developed. The results demonstrated an accuracy of 71.96% for the Random Forest algorithm in classifying patients with cardiovascular diseases and 72.26% in classifying patients with diabetes. Analysis of the most influential variables was also carried out using the SHAP method, which revealed some insights into the data.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão