Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Melo, Davi de Almeida"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Avaliação de algoritmo de clusterização para segmentação de nuvens de pontos 3D
    (2022-10-05) Melo, Davi de Almeida; Ferreira, Felipe Alberto Barbosa Simão; http://lattes.cnpq.br/9939255113143786; http://lattes.cnpq.br/3528552393951602
    As tecnologias 3D têm sido exploradas nas diversas áreas da indústria. Com essas tecnologias são executadas funções como visualização, instrumentação, controle, simulação, treinamento, planejamento, documentação, entre outros. A partir disso, novos tipos de mídia foram introduzidos a esse contexto industrial. Como exemplo, existem as nuvens de pontos, que trata-se de um conjunto de pontos distribuídos num modelo tridimensional da realidade. Elas, geralmente, são construídas através da atuação de um scanner e podem conter em cada um de seus pontos as características de um objeto como localização, cor, reflectância e entre outros aspectos. Dado que as nuvens de pontos irão representar peças, equipamentos, tubulações, máquinas, áreas, e estruturas no contexto industrial, conseguir segmentar as nuvens de pontos e possibilitar uma melhor visualização das partes separadas da mesma estrutura é uma ferramenta proveitosa. Além disso, dentre as funções das tecnologias 3D apresentadas, a segmentação de nuvens de pontos perpassa de forma direta e indireta as áreas de visualização, instrumentação e controle. Portanto, verificada a importância da segmentação de nuvens de pontos, o objetivo desta monografia é avaliar dois algoritmos de clusterização para segmentação de nuvens de pontos 3D. São eles, o DBSCAN e o K-means. Ambos estão categorizados como algoritmos de clusterização por meio aprendizagem de máquina não supervisionada. Após a avaliação, foram constatadas as diferenças entre cada algoritmo. Verificou-se um melhor desempenho por parte do K- means quando se trata de dados dispersos e o equivalente para o DBSCAN quando se referem a distribuição de dados com certa distância entre os clusters.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão