Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Costa, Matheus Rabelo Viana da"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Um breve estudo sobre o transporte paralelo, geodésicas e a aplicação exponencial
    (2023-09-15) Costa, Matheus Rabelo Viana da; Gomes, Renato Teixeira; http://lattes.cnpq.br/0570606157057337; http://lattes.cnpq.br/3078665075835586
    Geodésicas são curvas em uma superfície regular que possuem a propriedade de localmente minimizarem o comprimento, isto é, se dois pontos estão próximos, a curva que possui o menor comprimento ligando estes dois pontos é uma geodésica. Elas são a grosso modo as "retas" da superfície, pois possuem a norma do vetor velocidade constante, e são curvas de aceleração nula. Podemos chegar a estas curvas através da solução de um problema variacional, ou trilhando o "caminho da Geometria" no qual definimos geodésicas como uma curva cujo campo de vetores tangentes é paralelo. O estudo destas curvas em uma superfície nos leva ao conhecimento de várias propriedades geométricas importantes, além do desenvolvimento de novos maquinários, como sistemas de coordenadas especiais, por exemplo, que facilitam o estudo das superfícies e auxiliam no cálculo de estruturas geométricas importantes desta. Neste trabalho faremos um breve estudo sobre transporte paralelo, geodésicas, a aplicação exponencial e suas propriedades. Estudaremos a noção de derivada covariante, e como transportamos paralelamente vetores ao longo de curvas. Com essa ideia de paralelismo, definiremos geodésicas como uma curva que possui campo de vetores tangentes paralelo. Faremos um estudo sobre algumas propriedades destas curvas e da curvatura geodésica de curvas em superfícies. Por fim, estudaremos a aplicação exponencial, o sistema de coordenadas normais e o sistema de coordenadas polares geodésicas e utilizaremos este, para entre outras coisas mostrar que geodésicas possuem a propriedade de localmente minimizarem o comprimento.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão