Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Amaral, Carlos Ivan Santos do"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Avaliação de plataformas para o reconhecimento de placas veiculares brasileiras
    (2021-12-14) Amaral, Carlos Ivan Santos do; Garrozi, Cícero; http://lattes.cnpq.br/0488054917286587; http://lattes.cnpq.br/8099840025648951
    With the growing number of private vehicles in Brazil, better methods for managing and inspecting the vehicle fleet is becoming increasingly necessary. License plates (LP) are unique and mandatory objects with the purpose of identifying the vehicle as well as its owner. It is recommended that the efficient collection of information on license plates be performed by automated systems for LP detection and recognition. These systems are fundamental for the supervision and management of different activities related to vehicle traffic. In this regard, this paper presents a study that identifies methods for LP detection and recognition with algorithms based on machine learning and deep learning. To produce this experiment, we succeeded in collecting an image bank of vehicles in toll plazas that are located in the municipality of Cabo de Santo Agostinho - PE and provide access to the Governador Eraldo Gueiros Port Industrial Complex - SUAPE. The objective of this work was to provide a comparison between Microsoft Azure's computer vision service for LP object detection in conjunction with Google Vision's Optical Character Recognition (OCR) services with the YOLO v4 Deep Learning algorithm. The result of the experiment showed that under similar configuration conditions in both models studied, YOLO v4 performed better, achieving a 92% precision rate in license plate detection and recognition.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão