Albuquerque Júnior, Gabriel Alves deMercês, Thamires Lopes das2025-12-112025-08-08MERCÊS, Thamires Lopes das. Comparação de técnicas de redução de dimensionalidade aplicadas à clusterização de dados do censo da educação superior. 2025. 76 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2025.https://arandu.ufrpe.br/handle/123456789/8073A grande quantidade de informações coletadas em censos da educação e avaliações nacionais demanda métodos eficientes para extração de conhecimento, permitindo identificar padrões e tendências relevantes. Nesse contexto, a clusterização se destaca como uma ótima técnica para segmentar e interpretar grandes volumes de dados educacionais, sendo o K-Means um dos algoritmos mais utilizados devido à sua simplicidade e eficiência. No entanto, quando aplicado a conjuntos de dados de alta dimensionalidade, seu desempenho pode ser comprometido, tornando necessário o uso de técnicas de redução de dimensionalidade como Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE) e Uniform Manifold Approximation and Projection (UMAP). Este trabalho investiga o impacto dessas técnicas na qualidade dos agrupamentos gerados pelo K-Means em uma base de dados composta pela junção dos Microdados do Censo da Educação Superior de 2022 e os indicadores de qualidade educacional Conceito Enade e CPC. A análise é realizada utilizando o índice de silhueta como métrica de avaliação e comparando o tempo de execução de cada método. Com dois componentes, o PCA superou o t-SNE e o UMAP na maioria dos testes. Com três componentes, o PCA teve melhor desempenho que o t-SNE em todos os testes, mas ficou equilibrado com o UMAP, onde foi superior em cinco dos nove cenários. Observou-se, ainda, que a quantidade de clusters teve influência relevante nos resultados, especialmente no desempenho crescente do UMAP à medida que se aumentava o número de clusters. O UMAP e o t-SNE mostraram resultados equilibrados com dois componentes. Porém, com três componentes, o UMAP se mostrou melhor em todos os cenários. Além disso, o PCA foi a técnica mais rápida em todos os cenários avaliados, superando tanto o t-SNE quanto o UMAP em termos de tempo de execução.76 f.pt-BRopenAccesshttp://creativecommons.org/licenses/by/4.0/Ensino superiorCenso escolarAnálise de dadosAprendizado do computadorMineração de dados (Computação)ClusterizaçãoRedução de dimensionalidade (Estatística)Comparação de técnicas de redução de dimensionalidade aplicadas à clusterização de dados do censo da educação superiorbachelorThesisAttribution 4.0 International