Souza, Ellen Polliana RamosNascimento, Eliaquim Moreira do2020-07-202020-07-202019NASCIMENTO, Eliaquim Moreira do. Análise comparativa de métodos de aprendizado supervisionado para mineração de opinião dos usuários da plataforma de e-participação votenaweb. 2019. 47 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Unidade Acadêmica de Serra Talhada, Universidade Federal Rural de Pernambuco, Serra Talhada, 2019.https://repository.ufrpe.br/handle/123456789/2436Com a evolução das tecnologias da informação, passam a existir novos meios que visam promover uma sociedade mais democrática e participativa, como é o caso das plataformas de participação e colaboração eletrônicas, também conhecidas por e-participation e e-collaboration. Contudo, apesar de ser possível fornecer uma opinião na grande maioria dessas plataformas, tais opiniões não são analisadas e consideradas no processo de construção da proposta ou projeto de lei.É impossível para o ser humano compreender completamente todo o conteúdo em uma quantidade razoável de tempo, o que despertou um interesse na comunidade científica por sistemas capazes de extrair informações desse tipo de dado de forma automática. Mineração de opinião, também conhecida como análise de sentimento, é a área de estudo que analisa automaticamente sentimentos e opiniões das pessoas acerca de entidades, como produtos e serviços, expressos de forma não estruturada, como em texto, por exemplo. Neste sentido, este trabalho busca identificar o melhor conjunto de classificador versus técnica de de pre-processamento para análise das opiniões dos usuários de plataformas de e-participação e e-colaboração disponíveis para os cidadãos brasileiros. Como estudo de caso, para validação da aplicação, foram coletadas opiniões do portal VOTENAWEB, tendo em vista que o mesmo é bastante utilizado, além de permitir aos cidadãos postar comentários sobre um determinado projeto. Três algoritmos de aprendizado supervisionado, com diferentes técnicas de pré-processamento foram avaliadas que são tokenização, remoção de stopwords, N-grama, TF-IDF e a incorporação de palavras, a fim de obter a melhor configuração para mineração de opinião. O algoritimo de regressão linear obteve o melhor resultado com acurácia de 88,22% e f-medida de 87,07%, enquanto que o aprendizado profundo que o aprendizado profundo obteve acurácia de 84,96% e f-medida de 84,90%.47 f.porhttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BRSistemas de coleta automática de dadosProcessamento eletrônico de dadosUsuários da InternetInterfaces de usuário (Sistemas de computação)Análise comparativa de métodos de aprendizado supervisionado para mineração de opinião dos usuários da plataforma de e-participação votenawebbachelorThesisAtribuição-NãoComercial-CompartilhaIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://n2t.net/ark:/57462/001300000fxp0