Soares, Rodrigo Gabriel FerreiraGuimarães, Ariana Lima2024-02-222024-02-222019-12-10GUIMARÃES, Ariana Lima. Técnicas de comitês para a estimação de esforço na correção de software. 2019. 56 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2019.https://repository.ufrpe.br/handle/123456789/5638O planejamento bem definido de um projeto de software, desde os estágios iniciais, é imprescindível para o sucesso do desenvolvimento, seja ele referente à criação ou à manutenção do produto. Em anuência ao ciclo de vida de software, a manutenção é realizada de forma contínua após o produto ter sido construído e entregue, em paralelo à execução de testes por engenheiros e/ou usuários. Nessa etapa, surgem primariamente os documentos de Histórias de Usuário e Relatórios de Problemas, que descrevem, em linguagem natural, especificações de negócio, cenários de erros encontrados, correções esperadas e melhorias para o sistema. Esses documentos visam, dentre outras coisas, o mapeamento das atividades a serem realizadas durante o projeto. Por conseguinte, em consonância com os recursos disponíveis – humanos, financeiros e temporais -, torna-se possível estimar o esforço necessário no desenvolvimento das atividades e gerar informações essenciais a um planejamento eficaz e eficiente. Como esses documentos são escritos em textos naturais, surge a oportunidade de utilizar o Processamento de Linguagem Natural e o Aprendizado de Máquina (AM) para predição automatizada do esforço de software. Na prática, no dia-a-dia das fábricas de software, é comum a utilização da opinião de especialistas e da equipe do projeto para julgar o esforço requisitado por uma atividade durante sessões de Planning Poker. Nessa técnica, normalmente o esforço é medido em Pontos de História que seguem a sequência Fibonacci. Porém, esse modo de planejamento requer o escalonamento de muitos recursos para sua execução. A aplicação do AM acarreta em um sistema, após a fase de treinamento, capaz de apreender a experiência da equipe e replicá-la de forma rápida e automática para estimar o esforço das atividades. Dessa forma, este trabalho atinge a área de AM, propondo uma abordagem de Comitê de PVDM na extração de características de Relatórios de Problemas para estimar Pontos de História, os indicadores de esforço. Comparada a outras duas abordagens de BoW e PV-DM tradicional, a técnica proposta apresentou bons resultados, com f-measure de cerca de 80% em um classificador de SVM com aprendizado supervisionado. Os resultados dos experimentos inspiram um ponto de partida no aprofundamento do estudo da abordagem de Comitê de PV-DM e no seu aprimoramento.56 f.poropenAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt-brClassificação textual (Computação)Inteligência artificialRedes neurais (Computação)Engenharia de softwareTécnicas de comitês para a estimação de esforço na correção de softwarebachelorThesisAtribuição-NãoComercial-SemDerivações 4.0 Internacionalhttps://n2t.net/ark:/57462/001300000fs33