Ferreira, Felipe Alberto Barbosa SimãoMedeiros, Jorge Barros2023-12-212023-12-212023-10-03MEDEIROS, Jorge Barros. Filtragem de sinais sobre grafos aplicada à classificação de dados ruidosos definidos em estruturas irregulares. 2023. 11 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Eletrônica) - Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, 2023.https://repository.ufrpe.br/handle/123456789/5243As redes convolucionais baseadas em grafos (Graph Convolutional Networks, GCN) permitem que modelos de redes neurais profundas aprendam a partir de dados definidos em estruturas irregulares representados por meio de um grafo. Essa abordagem tem atraído cada vez mais atenção nos últimos anos. Tais algoritmos geralmente aprendem com base na informação associada aos vértices e arestas do grafo, sendo possível utilizá-las para melhorar o desempenho de diversas tarefas como classificação de vértices, de um sinal definido sobre o grafo ou do próprio grafo. O objetivo deste trabalho é avaliar a classificação de dados ruidosos dispostos em uma estrutura irregular a partir do treinamento de filtros passa-baixas realizado pelas camadas convolucionais de uma GCN. Os filtros são projetados e aplicados baseando-se em ferramentas de processamento de sinais sobre grafos como a transformada de Fourier sobre grafos. A rede neural convolucional baseada em grafos realizará o aprendizado de parâmetros para diferentes escalas de ruídos no domínio da transformada de Fourier sobre grafos que sejam capazes de extrair informação relevante para classificação do conjunto de dados ruidosos.11 f.poropenAccesscreativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BRProcessamento digital de sinaisAprendizado do computadorAprendizagem profundaRedes neurais baseadas em grafosFiltragem de sinais sobre grafos aplicada à classificação de dados ruidosos definidos em estruturas irregularesbachelorThesisatribuition - non commercial - no derivs 4.0 Brazilhttps://n2t.net/ark:/57462/001300000ffps