Licenciatura em Matemática (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/24


Siglas das Coleções:

APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Uma breve introdução sobre medida e integração
    (2025-03-19) Silva, Natanael Oliveira da; Costa, Filipe Andrade da; http://lattes.cnpq.br/1539148990127629; http://lattes.cnpq.br/1046184916089584
    O presente trabalho investiga as relações preliminares da integral de Lebesgue, utilizando a teoria da medida e a σ-álgebra. Inicialmente, introduzimos as definições preliminares de conjuntos e suas operações, além da abordagem sobre classes e famílias de conjuntos, abordamos algumas proposições e definições de semi-aneis e semi-álgebras e sua generalização para contextos enumeráveis, abordamos algumas propriedades e definições de medida como foco de uma definição simplista da integração, além de uma análise das funções mensuráveis que são integráveis à Lebesgue. A seguir, mostramos a existência de sequências de funções simples sn que convergem para uma função f mensurável, permitindo que a integral de Lebesgue seja definida como o limite da integral dessas funções simples. Exploramos as propiedades das integrais para variadas hipóteses, o teorema de convegência monótona e a integral de sn sob a medida de Borel e sua comparação com a integral de Riemann para sn, enuciando que, as funções integraveis via Riemann são integraveis via Lebesgue. Com base nesses resultados, mostramos que a integral de Lebesgue estende a integral de Riemann, garantindo que qualquer função integrável no sentido de Riemann também seja integrável no sentido de Lebesgue. O objetivo deste trabalho é fazer uma breve introdução sobre as integrais de Riemann e Lebesgue, demonstrando que a integral de Lebesgue complementa a de Riemann.
  • Imagem de Miniatura
    Item
    Uma introdução aos espaços de Lebesgue: completude, separabilidade e reflexibilidade
    (2022-06-09) Wanderley, Lucas Rodrigues; Carvalho, Gilson Mamede de; http://lattes.cnpq.br/0044877127514130; http://lattes.cnpq.br/9012501383942232
    Por meio desse trabalho, objetivo estudar as propriedades de separabilidade, reflexividade, completude e dualidade dos espaços Lp (X, Σ, μ) com 1 ≤ p ≤ ∞. Para este estudo, no Capítulo1, trataremos sobre conceitos prévios, que servirão como base na demonstração de futuros resultados, destacando aqui o conceito de completude de um espaço métrico e algumas de suas características. Após isso, já no Capítulo 2, abordaremos o que vem a ser um espaço separável e também reflexivo, bem como serão apresentadas algumas de suas principais propriedades. Por último, e não menos importante, para a construção do presente trabalho, apresentaremos o estudo feito acerca dos espaços de Lebesgue, visando com isso, verificar ou não, as propriedades de completude, separabilidade e reflexividade.