Bacharelado em Sistemas de Informação (Sede)

URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/12


Siglas das Coleções:

APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Análise de sentimentos dos tweets relacionados ao Superior Tribunal Federal no ano de 2019
    (2022-11-10) Cadengue, Guilherme Lapa de Araújo; Andrade, Ermeson Carneiro de; Bocanegra, Silvana; http://lattes.cnpq.br/4596111202208863; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/8502533221842320
    As redes sociais desde suas origens afetaram todos os usuários da Internet. Redes sociais, como o Twitter fornecem um novo modo de comunicação, interação e principalmente uma forma de expressar opiniões sobre os diversos eventos da vida em sociedade, consequentemente possibilitam geração de conteúdo. Conhecer as opiniões dos brasileiros sobre instituições públicas é muito importante para o engajamento das pessoas na sociedade, como forma de agentes participantes nas decisões que afetam todos os indivíduos, ou seja, é uma forma de inclusão social. A aplicação da Análise de sentimentos é realizada em diversas áreas para extrair o teor da opinião pública. Este trabalho visa identificar os sentimentos da população brasileira sobre o Superior Tribunal Federal do Brasil através dos conteúdos de tweets publicados entre Janeiro e Dezembro de 2019. Para isso foram coletados os tweets no período, os quais foram pré-processados, classificados e analisados. Os resultados mostram opiniões bastante polarizadas, mas que predominam, de forma geral, opiniões negativas em relação ao STF (estimativa em 51,7%).
  • Imagem de Miniatura
    Item
    Análise de sentimentos em Tweets relacionados ao desmatamento da Floresta Amazônica
    (2021-12-17) Silva, Vinicius José Paes e; Andrade, Ermeson Carneiro de; http://lattes.cnpq.br/2466077615273972; http://lattes.cnpq.br/7437953784606274
    A Floresta Amazônica está sendo devastada no maior ritmo dos últimos anos. Em 2021, Amazônia registra o maior acúmulo de desmatamento em 5 anos, passando de 13 mil km2 entre agosto de 2020 a julho de 2021. Um aumento de 22% no desmatamento, em relação ao mesmo período do ano anterior, sendo o maior número desde 2006. Embora muitos trabalhos abordem o tema de desmatamento, nenhum deles foca em analisar os sentimentos da população brasileira com relação ao tema. Este trabalho apresenta uma análise dos sentimentos dos usuários brasileiros do Twitter relacionados ao desmatamento da Floresta Amazônica através da mineração de texto do Twitter e busca entender como os usuários brasileiros opinam e dialogam sobre a desmatamento da Floresta Amazônica. Os resultados revelam que os usuários brasileiros tendem a reagir a acontecimentos relacionados ao desmatamento da floresta Amazônica no Twitter e, que em sua maioria, os usuários apresentam sentimento negativo sobre o tema, alcançando picos de aproximadamente 60% dos tweets em determinado momento.
  • Imagem de Miniatura
    Item
    Estudo comparativo de algoritmos de classificação supervisionada para classificação de polaridade em análise de sentimentos
    (2019) Albuquerque, Rotsen Diego Rodrigues de; Albuquerque Júnior, Gabriel Alves de; http://lattes.cnpq.br/1399502815770584; http://lattes.cnpq.br/6441716676783585
    Com o grande aumento de dados na internet, mostra-se uma rica fonte para a avaliação da opinião pública sobre uma entidade específica. Consequentemente, o número de opiniões disponíveis torna impossível uma tomada de decisão se for necessário ler e analisar todas as opiniões. Como o uso de Machine Learning tem sindo bastante usado, irei apresentar um estudo comparativo de dois algoritmos para classificar oscomentários usando técnicas de processamento de linguagem natural e Análise de Sentimentos. O dados obtidos foram obtidos manualmente onde através do site de competições chamado Kaggle temos cerca de 50.000 comentários sobre diversos filmes. Este estudo tem por finalidade usar também os conceitos da ciência de dados e Machine Learning, processamento de linguagem natural e analises de sentimentos para agregar mais informação sobre a industria de entretenimento e cinema. Por isso esses algoritmos foram criados para que seja possível mostrar os resultados para esse domínio nos reviews de filmes registrados no site da grande industria cinematográfica o famoso IMDB. Após a aplicação dos treinos e testes, a máquina teve uma Acuráciade 86% sobre a predição de textos comentados de filmes.
  • Imagem de Miniatura
    Item
    Aspect term extraction in aspect-based sentiment analysis
    (2019) Francisco, Alesson Delmiro; Lima, Rinaldo José de; http://lattes.cnpq.br/7645118086647340
    O uso crescente da Internet criou a necessidade de analisar uma vasta quantidade dedados. Uma grande quantia de dados é apresentada como Texto em Linguagem Naturalnão estruturado, com várias maneiras de expressar a mesma informação. É uma tarefaimportante extrair informação e significado destes conteúdos não estruturados, comoopiniões em produtos ou serviços. A necessidade de extrair e analisar a vasta quantidadede dados criados todos os dias na Internet ultrapassou as capacidades humanas, comoresultado, várias aplicações de mineração de texto que extraem e analisam dados textuaisproduzidos por humanos estão disponíveis atualmente, uma destas aplicações é a Análise deSentimentos usada para que empresas e provedores de serviços possam usar o conhecimentoextraído de documentos textuais para melhor entender como seus clientes pensam sobreeles. No entanto, a tarefa de analisar texto não estruturado é difícil, por isso é necessárioprover informação coerente e resumos concisos para as revisões. Análise de Sentimentoé o processo de identificar e categorizar computacionalmente opiniões expressadas numtexto, especialmente para determinar a atitude do autor sobre um tópico ou produto emparticular. Análise de Sentimentos Baseada em Aspectos (ABSA) é um sub-campo daAnálise de Sentimentos que tem como objetivo extrair opiniões mais refinadas e exatas,quebrando o texto em aspectos. A maior parte dos trabalhos atuais na literatura não lucramde recursos baseados em semântica ou análises baseadas em Processamento de LinguagemNatural na fase de pré-processamento. Para tratar essas limitações, um estudo nestesrecursos é feito com o objetivo de extrair as características necessárias para a execuçãoda tarefa, e para fazer a melhor combinação para Extração de Termo de Aspecto. Estetrabalho tem como o principal objetivo implementar e analisar um método de Extraçãode Termo de Aspecto (ATE) de críticas de usuários (restaurantes e laptops). O métodoproposto é baseado em uma abordagem supervisionada chamada Campos CondicionaisAleatórios (CRF) que otimiza o uso de características para classificação, esta escolha éjustificada pelos trabalhos relacionados anteriores que demonstram a eficácia do CRFpara ATE. Um estudo também é feito em métodos para propor novas características eexperimantar com combinações de características para obter as melhores combinações.O estudo detalhado é feito a partir da experimentação com características de palavra,n-gramas e características customizadas utilizando um algoritmo supervisionado CRF pararealizar a tarefa de Extração de Termo de Aspecto com resultados em termo de Precisão,Cobertura e F-Measure, as métricas padrões de avaliação adotadas na área. Por fim, umaavaliação comparativa entre o método proposto para ATE contra outros trabalhos daliteratura mostra que o método apresentado neste trabalho é competitivo.